
The Vmatch large scale sequence analysis software

A Manual

Stefan Kurtz
Center for Bioinformatics,

University of Hamburg,
Bundesstrasse 43, 20146 Hamburg, Germany,

E-mail: kurtz@zbh.uni-hamburg.de

January 11, 2016

CONTENTS I

Contents

1 Introduction 1

2 mkvtree 5
2.1 The Options of mkvtree . 6

2.2 Applying mkvtree . 11

3 mkdna6idx 15

4 vseqinfo 17
4.1 Applying vseqinfo . 17

5 vstree2tex 18
5.1 Applying vstree2tex . 19

6 vseqselect 20
6.1 Applying vseqselect . 21

7 vsubseqselect 22
7.1 Applying vsubseqselect . 23

8 vmigrate.sh 24
8.1 Applying vmigrate.sh . 24

9 vmatch 24
9.1 Input Options . 28

9.2 Matchkind Options . 28

9.3 Postprocessing Options . 29

9.4 Algorithm Options . 33

9.5 Direction Options . 34

9.6 Matchconstraint Options . 34

9.7 Output Options . 37

9.8 Miscellaneous Options . 39

9.9 Applying vmatch . 40

CONTENTS II

9.9.1 Self Comparison . 40

9.9.2 Matching Queries against an Index . 48

9.9.3 Matching a DNA sequence against a Protein Index 53

9.9.4 Matching a DNA sequence on the Protein Level 53

9.9.5 Computing Regions not containing a Match 55

9.9.6 Masking Matches . 56

9.9.7 Clustering Indexed Sequences . 57

9.9.8 Computing a non-redundant set of sequences 59

9.9.9 Chaining Matches . 60

9.9.10 Clustering Matches . 61

9.9.11 Selection Functions . 63

10 vmatchselect 65

11 Recent Changes 66

12 References 72

A Basic Notions 74

B Specification of a symbol mapping 76

C The X-Drop Extension Strategy 78

D Substring Specifications 78

E Selection Function Bundles 79

F The Tables Comprising the Index 82

G Environment Variables 86

1 INTRODUCTION 1

1 Introduction

This document describes Vmatch, a versatile software tool for efficiently solving large scale
sequence matching tasks. Vmatch subsumes the software tool REPuter [7] but is much more
general, with a very flexible user interface, and improved space and time requirement. Here are
the most important features of Vmatch.

Persistent index

Usually, in a large scale matching problem, extensive portions of the sequences under consider-
ation are static, i.e. they do not change much over time. Therefore it makes sense to preprocess
this static data to extract information from it and to store this in a structured manner, allowing
efficient searches. Vmatch does exactly this: it preprocesses a set of sequences into an index
structure. This is stored as a collection of several files constituting the persistent index. The
index efficiently represents all substrings of the preprocessed sequences and, unlike many other
sequence comparison tools, allows matching tasks to be solved in time, independent of the size
of the index. Different matching tasks require different parts of the index, but only the required
parts of the index are accessed during the matching process.

Alphabet independency

Most software tools for sequence analysis are restricted to DNA and/or protein sequences. In
contrast, Vmatch can process sequences over any user defined alphabet not larger than 250 sym-
bols. Vmatch fully implements the concept of symbol mappings, denoting alphabet transforma-
tions. These allow the user to specify that different characters in the input sequences should be
considered identical in the matching process. This feature is used to group similar amino acids,
for example.

Versatility

Vmatch allows a multitude of different matching tasks to be solved using the persistent index.
Every matching task is basically characterized by (1) the kind of sequences to be matched, (2)
the kind of matches sought, (3) additional constraints on the matches, and (4) the kind of post-
processing to be done with the matches.

In the standard case, Vmatch matches sequences over the same alphabet. Additionally, DNA
sequences can be matched against a protein sequence index in all six reading frames. Finally,
DNA sequences can be transformed in all six reading frames and compared against itself.

Where appropriate, Vmatch can compute the following kinds of matches, using state-of-the-art
algorithms:

1 INTRODUCTION 2

• maximal and supermaximal repeats using the algorithms of [2].

• branching tandem repeats using the algorithm of [1],

• maximal (unique) substring matches using the algorithms of [6].

• complete matches using the algorithms of [8] and [9]

To compute degenerate substring matches or degenerate repeats, each kind of match (with the
exception of tandem repeats and complete matches) can be taken as an exact seed and extended
by either of two different strategies:

• the maximum error extension strategy, as described in [7] for repeat detection,

• the greedy extension strategy of [12].

Matches can be selected according to their length, their E-value, their identity value, or match
score.

In the standard case, a match is displayed as an alignment including positional information.
Alternatively, a match can directly be postprocessed in different ways:

• inverse output, i.e. reporting of substrings not covered by a match.

• masking of substrings covered by a match.

• clustering of sequences according to the matches found.

• chaining of matches, i.e. finding optimal subsets of matches which do not cross, using the
algorithms described in [3].

• clustering of matches according to pairwise sequence similarities computed by the dy-
namic programming algorithm of [10].

• clustering of matches according to the positions where they occur, following the approach
of [11].

Efficient algorithms and data structures

Vmatch is based on enhanced suffix arrays described Abouelhoda, Kurtz & Ohlebusch, 2004.
This data structure has been shown to be as powerful as suffix trees, with the advantage of a re-
duced space requirement and reduced processing time. Careful implementation of the algorithms
and data structures incorporated in Vmatch have led to exceedingly fast and robust software, al-
lowing very large sequence sets to be processed quickly. The 32-bit version of Vmatch can
process up to 400 million symbols, if enough memory is available. For large server class ma-
chines (e.g. SUN-Sparc/Solaris, Intel Xeon/Linux, Compaq-Alpha/Tru64) Vmatch is available as
a 64 bit version, enabling gigabytes of sequences to be processed.

1 INTRODUCTION 3

Flexible input format

The most common formats for input sequences (Fasta, Genbank, EMBL, and SWISSPROT) are
accepted. The user does not have to specify the input format. It is automatically recognized.
All input files can contain an arbitrary number of sequences. Gzipped compressed inputs are
accepted.

Customized output and match selection

Vmatch’s output can be parsed by other programs easily. Furthermore, several options allow for
its customization. XML output is available and new output formats can easily be incorporated
without changing Vmatch’s program code. Certain matches can easily be selected by user defined
criteria, without intermediate output and subsequent parsing.

The parts of Vmatch

Up until now we have referred to Vmatch as a collection of programs. In the following we use
the same name, vmatch (in typewriter font), for the most important program in this collection.
Besides vmatch, there are the following programs available:

1. mkvtree constructs the persistent index and stores it on files.

2. mkdna6idx constructs an index for a DNA sequence after translating this in all six read-
ing frames.

3. vseqinfo delivers information about indexed database sequences.

4. vstree2tex outputs a representation of the index in LATEX-format. It can be used, for
example, for educational or debugging purposes.

5. vseqselect selects indexed sequences satisfying specific criteria.

6. vsubseqselect selects substrings of a specified length range from an index.

7. vmigrate.sh converts an index from big endian to little endian architectures, or vice
versa.

8. vmatchselect sort and selects matches delivered by vmatch.

9. chain2dim computes optimal chains of matches from files in Vmatch-format.

10. matchcluster computes clusters of matches from files in Vmatch-format.

Figure 1 depicts the data flow in the different tools described in this manual.

1 INTRODUCTION 4

Figure 1: The Dataflow in Vmatch. The programs are shown in ellipses. The inputs are the
database and the query sequences and the alphabet transformation, represented by rectangles. At
the center of all computations the persistent index is shown. All other rectangles represent the
different kinds of output.

2 MKVTREE 5

Overview

The rest of this document is organized as follows: In Section 2 we describe mkvtree, a program
which constructs the index. For a DNA sequence we can construct a six-frame index using
the programming mkdna6idx, described in section 3. Section 4 is devoted to the program
vseqinfo which delivers information about the indexed database sequences. In Section 5 we
describe the program vstree2tex which outputs the tables of a virtual suffix tree in LATEX-
format. Section 6 is devoted to the program vseqselect which allows to select sequences
from an index satisfying specific criteria. Similarly, the program vsubseqselect described
in Section 7 selects substrings of a specified length range from an index. Section 8 describes the
shell-script vmigrate.sh to convert an index from big endian (e.g. SUN/Sparc or SGI/IRIX)
to little endian (e.g. Linux or Compaq-Alpha) architectures, or vice versa. In Section 9 we explain
how to use the program vmatch which allows to solve a variety of matching tasks on the index.
Section 10 is devoted to the program vmatchselect, which allows to sort and select matches
delivered by vmatch. Each of these sections is completed with several examples showing how
to apply the different programs to solve the different matching tasks. In the course of this, the
output format is explained.

In Appendix A we define some basic notions. Appendix B explains the format of the symbol
mapping. Appendix C goes into detail about the X-drop extension strategy. Substring Specifica-
tions are described in Appendix D. Appendix E is devoted to the concept of selection functions.
Finally Appendix F explains the tables the index consists of.

2 mkvtree: Making Virtual Suffix Trees

The program mkvtree constructs an index for a given set of sequences These are given as a list
of input files. The sequences are referred to as database sequences. They can be over any given
alphabet. The alphabet can be the DNA alphabet, or the protein alphabet, or any other alphabet
consisting of printable characters. An alphabet is specified by a file storing a symbol mapping.
The index consists of several files, the index files. Each such file stores a different table. The
user specifies which tables (i.e. which part of the index) is written to a file, using one of eight
output options, or a single option specifying that all tables are written to file. Appendix F gives a
comprehensive description of the different tables. We recommend the user to only use the output
options -tis, -ois, -suf, -sti1, -bwt, -bck, and -lcp. Option -skp is only necessary for
approximate pattern matching.

If an error occurs, the program exits with error code 1. Otherwise, the exit code is 0. We support
the following formats for the input files. They are recognized according to the first non-white
space symbol in the file.

multiple FASTA format If the file begins with the symbol >, then this file is considered to be a
file in multiple FASTA format (i.e. it contains one or more sequences). Each line starting
with the symbol > contains the description of the sequence following it. Each line not

2 MKVTREE 6

starting with the symbol > contains the sequence. Empty lines are allowed and ignored
when reading the input.

multiple EMBL/SWISSPROT format If the file begins with the string ID, then this file is con-
sidered to be a file in multiple EMBL format (i.e. containing one or more sequences, each
in EMBL-format). The information contained in the ID and DE-lines is taken as the de-
scription of the corresponding sequence. The EMBL format is identical to the SWISSPROT

format (w.r.t. the information we need to extract from such entries). So one can also use
files in multiple SWISSPROT format as input.

multiple GENBANK format If the file begins with the string LOCUS, then this file is considered
to be a file in multiple GENBANK format (i.e. containing one or more entries in GENBANK-
format). The information contained in the LOCUS and the DEFINITION-lines is taken as
the description of the corresponding sequence.

plain format If the file does not begin with the symbol > or the strings ID or LOCUS, then the
file is taken verbatim. That is, the entire file is considered to be the input sequence (white
spaces are not ignored).

There is no special option necessary to tell the program the sequence format. It automatically de-
tects the appropriate format, according to the rules given above. If none of the above rules apply,
then the program cannot recognize the input format and exits with error code 1. In such a case
please check you input files for if they are conform with the input formats above. Another good
solution is to use a more versatile sequence format transformation programs (e.g. readseq) to
first generate multiple FASTA files and then feed this into mkvtree.

Today many files containing sequence files are provided compressed by the program gzip. To
simplify the use of these files, mkvtree also accepts gzipped input files. These files must have
the ending .gz. The gzipped formatted files are gunzipped internally and then processed as any
other file.

2.1 The Options of mkvtree

In this subsection, we describe the program mkvtree by explaining its options. An option is
always beginning with the dash symbol. We write an option in typewriter mode. Arguments
to options are written in typewriter mode if they are to be used verbatim. We use italics for an
option argument if it is to be replaced by a some value. Table 1 gives an overview of the option
available in mkvtree.

The program is called as follows:

mkvtree options

And here is a description of the options:

2 MKVTREE 7

Table 1: Overview of the mkvtree-Options

-db specify database files (mandatory)
-q specify query files
-smap specify file containing a symbol mapping
-dna input is DNA sequence
-protein input is Protein sequence
-indexname specify name for index to be generated
-pl specify prefix length for bucket sort
-rev use reverse input sequence
-tis output transformed input sequences (tistab) to file
-ois output original input sequences (oistab) to file
-suf output suffix array (suftab) to file
-sti1 output reduced inverse suffix array (sti1tab) to file
-bwt output Burrows-Wheeler Transformation (bwttab) to file
-bck output bucket boundaries (bcktab) to file
-lcp output longest common prefix lengths (lcptab) to file
-skp output skip values (skptab) to file
-allout output all index tables to files
-v verbose mode
-help this option

-db dbfiles
Specify a non empty list of database files separated by white spaces. Each database file
contains sequences in one of the formats as specified above. However, the format of all
files has to be identical. The sequence must consist of characters over the alphabet as
specified by the options -dna, -protein, or -smap, see below. White spaces are ignored.
This option is mandatory.

-smap mapfile
Specify the file storing the symbol mapping. If the given mapfile cannot be found in the
directory where mkvtree is run, then all directories specified by the environment variable
MKVTREESMAPDIR are searched. If defined correctly, this contains a list of directory paths
separated by colons (‘:’). For example, if one uses the csh or the tcsh, the definition
of the environment-variable could look like this:

$ setenv MKVTREESMAPDIR "$HOME/vstree:/usr/vstree/TRANS"

For the bash or the sh the definition could look like

$ MKVTREESMAPDIR="$HOME/vstree:/usr/vstree/TRANS"
$ export MKVTREESMAPDIR

Then, if mapfile is not available in the current directory, mkvtree searches for mapfile in the
two given directories. It scans the directory-list from left to right. As soon as it has found

2 MKVTREE 8

the file it stops. If the file cannot be found an error message is reported and the program
exits with error code 1. See Appendix B for a more detailed explanation of the format of
the symbol mapping file.

-dna

This option is equivalent to the option -smap mapfile where mapfile stores exactly the fol-
lowing 5 lines:

aA
cC
gG
tTuU
nsywrkvbdhmNSYWRKVBDHM

This specifies an alphabet of size 4 with additional wildcard symbols appearing in the fifth
line. See Appendix B for a more detailed explanation of the format of the symbol mapping
file.

-protein

This option is equivalent to the option -smap mapfile where mapfile stores exactly the fol-
lowing 21 lines:

L
V
I
F
K
R
E
D
A
G
S
T
N
Q
Y
W
P
H
M
C
XUBZJO*-

This specifies an alphabet of size 20 with additional wildcard symbols on the last line. See
Appendix B for a more detailed explanation of the format of the symbol mapping file.

2 MKVTREE 9

Table 2: The value of prefixlength automatically determined for different ranges for DNA and
proteins and different input sizes.

DNA
range of n prefixlength
513−2,048 4
2,049−8,192 5
8,193−32,768 6
32,769−131,072 7
131,073−524,288 8
524,289−2,097,152 9
2,097,153−8,388,608 10
8,388,609−33,554,432 11
33,554,433−134,217,728 12
134,217,729−536,870,912 13

protein
range of n prefixlength
161−3,200 2
3,201−64,000 3
64,001−1,280,000 4
1,280,001−25,600,000 5

-indexname filepath
Specify filepath to be the name of the index, later referred to by indexname. This option
is mandatory, if more than one database file is given and if additionally at least one file
comprising the index is stored (i.e. if any of the output options is used). If no file from the
index is stored, then this option is not allowed. If there is only one database file, and this
option is not given, then indexname is the basename of the given filepath, i.e. the filename
stripped by the directory path where it is stored. The filepath can be a complete path.

-pl [prefixlength]
Start the sorting of the suffixes with a initial step that sort all suffixes according to their
prefixes of length prefixlength. The argument prefixlength is optional. Hence it is denoted in
square brackets. If the argument is omitted, then the value for prefixlength is automatically
determined. More precisely, it is

⌊
logk

n
8

⌋
, where n is the total length of the database

sequences and k is the alphabet size (k = 4 for DNA, k = 20 for proteins, and k = one
less than the number of lines in the corresponding symbol mapping file). Table 2 shows
the choices for the prefixlength for DNA and protein sequences, given different ranges of
values for n. The maximum value for prefixlength is

⌊
logk

4n
8

⌋
. If you want to choose

the prefix length manually, then we recommend prefixlength ∈ [4,13] for DNA sequences,
and prefixlength ∈ [2,5] for protein sequences, depending on the total length of the input
sequences, see Table 2. If this option is not specified, then the value for prefixlength is 0,
in which case no initial bucket sort is performed. Note that in case you want to match a
query against the index, the least length for the search must be at least prefixlength.

-tis

Store the table tistab in file indexname.tis.

2 MKVTREE 10

-ois

Store the table oistab in file indexname.ois.

-suf

Store the table suftab in file indexname.suf.

-sti1

Store the reduced version of the inverse suffix table stitab in file indexname.sti1.

-bwt

Store the table bwttab and the integer i satisfying suftab[i] = 0 in file indexname.bwt.

-bck

Store the table bcktab in file indexname.bck.

-lcp

Store the tables lcptab and llvtab in the files indexname.lcp and indexname.llv.

-skp

Store the table skptab in file indexname.skp.

-allout

This option is equivalent to the combination of the output options -tis, -ois, -suf, -sti1,
-bwt, -bck, -lcp, and -skp.

-v

Be verbose, that is, give reports about the different steps as well as the resource require-
ments of the computation. This option is recommended.

-version

Show the version of the Vmatch version, the program is part of. Also report the compila-
tion date and the compilation options.

-help

Show a summary of all options and terminate with exit code 0.

Note the following when combining options of mkvtree:

• If any of the output options -tis, -ois, -suf, -bwt, -lcp, -bck, -skp, or -allout is
used, then tables prjtab, ssptab, destab, and sdstab are stored in the files indexname.prj,
indexname.ssp, indexname.des, and indexname.sds.

• Option -allout cannot be combined with any other output option.

• Option -bck requires that the option -pl is used.

• Option -skp requires that the options -lcp and -suf are used.

2 MKVTREE 11

• The options -smap, -dna, and -protein pairwise exclude each other. If the input files are
in FASTA-, EMBL-, SWISSPROT-, or GENBANK-format, then one of these three options is
required. If the input files are not in FASTA-, EMBL-, SWISSPROT-, or GENBANK-format,
then none of these option is allowed, and the symbol transformation is automatically gen-
erated satisfying the following: the symbol in the input files with the smallest ASCII code
is mapped to 0, the symbol with the second smallest ASCII code is mapped to 1, etc.

• There must be at least one database file. The maximum number of database files is 256.

In case an error occurs, the error code of mkvtree is 1. Otherwise, it the exit code is 0.

2.2 Applying mkvtree

Suppose we have a file atEST in multiple FASTA format containing several EST sequences from
the Arabidopsis thaliana genome.

>gi|5587835|gb|AF078689.1|AF078689 AF078689 Arabidopsis thaliana
AGTGGCTACGGCGGCGGTGGCGGCGATGGAAGTAGACGGATGGTGGTAGGAATGAAAGGCTAGAAGCGGC
GGAGAAGTATGTGGATAAGAAATAACAAAAACTGAGGGGATCATGAAGTTCTTCGTTATATTATAGTTTT
CAATCTGAATTTCAATTCCGCCGCTCGCCTTTTTCCTCTCCGCCTTTTCCGTCTCTCCGATCTGCTCCCG
CCGCCGACCTTGTGATGATTATAGCTCTGAAGGTCCATACAAGGATATAAAAAAAAAAAAAAAAA
>gi|4714049|dbj|C99932.1|C99932 C99932 Arabidopsis thaliana
ATGRAYAMTCAAAAATGGAGTMTAGGTTTCATATCTCTCGCTTTTCTCTTCATCACTTCCTCTTCAGCTG
...

The size of the file is about one megabyte:

$ ls -l atEST
-rw-r----- 1 kurtz users 999815 Nov 6 21:37 atEST

We want to construct an index using atEST as a database file. Since the sequences in atEST are
DNA sequences, we use the option -dna when constructing the index. We add the option -pl,
since we want to construct table bcktab. Moreover, we specify option -allout to create all files
comprising the index, and -v to obtain information about what the program is doing, and the
resources it requires.

$ mkvtree -db atEST -dna -pl -allout -v
reading file "atEST"
maximal value for argument of option -pl is 9, recommended value is 8
total length of sequences: 772376 (including 1951 separators)
alphabet of size 5: acgtn
creating file "atEST.tis"
creating file "atEST.ois"
creating file "atEST.des"
creating file "atEST.sds"

2 MKVTREE 12

creating file "atEST.lcp"
initializing data structures
sorting suffixes according to prefix of length 8
sorting all buckets
creating file "atEST.llv"
creating file "atEST.bck"
creating file "atEST.suf"
creating file "atEST.sti1"
creating file "atEST.bwt"
creating file "atEST.prj"
creating file "atEST.al1"
creating file "atEST.skp"
overall space peak: main=5.34 MB (7.25 bytes/symbol), secondary=1.69 MB

The previous call of mkvtree has constructed several index files:

$ ls -l atEST.*
-rw-r----- 1 kurtz gistaff 37 2005-02-01 01:43 atEST.al1
-rw-r----- 1 kurtz gistaff 524288 2005-02-01 01:43 atEST.bck
-rw-r----- 1 kurtz gistaff 772381 2005-02-01 01:43 atEST.bwt
-rw-r----- 1 kurtz gistaff 215445 2005-02-01 01:43 atEST.des
-rw-r----- 1 kurtz gistaff 772377 2005-02-01 01:43 atEST.lcp
-rw-r----- 1 kurtz gistaff 18536 2005-02-01 01:43 atEST.llv
-rw-r----- 1 kurtz gistaff 772376 2005-02-01 01:43 atEST.ois
-rw-r----- 1 kurtz gistaff 179 2005-02-01 01:43 atEST.prj
-rw-r----- 1 kurtz gistaff 7812 2005-02-01 01:43 atEST.sds
-rw-r----- 1 kurtz gistaff 3089508 2005-02-01 01:43 atEST.skp
-rw-r----- 1 kurtz gistaff 7804 2005-02-01 01:43 atEST.ssp
-rw-r----- 1 kurtz gistaff 772377 2005-02-01 01:43 atEST.sti1
-rw-r----- 1 kurtz gistaff 3089508 2005-02-01 01:43 atEST.suf
-rw-r----- 1 kurtz gistaff 772376 2005-02-01 01:43 atEST.tis

Currently, none of the programs described here requires the table with the skip-values. Hence
the file atEST.skp can be safely removed. You can of course directly specify which files you
want to generate by giving the appropriate output options.

Here is an example constructing an index for a complete genome, the pathogen Ecoli O157:H7.
This is stored in the file EcoliO157H7. Now we explicitely ask for the construction of a subset
of the tables comprising the index, using the options -sti1, -bwt, -bck, -suf, -lcp, -tis, and
-ois.

$ mkvtree -db EcoliO157H7 -v -pl -sti1 -bwt -dna -bck -suf -lcp -tis -ois -skp
reading file "EcoliO157H7"
maximal value for argument of option -pl is 10, recommended value is 9
total length of sequences: 5471376
alphabet "aAcCgGtTuUnsywrkvbdhmNSYWRKVBDHM" (size 32) mapped to "acgtn" (size 5)
create file "EcoliO157H7.tis"
create file "EcoliO157H7.ois"
create file "EcoliO157H7.des"
create file "EcoliO157H7.sds"
create file "EcoliO157H7.lcp"

2 MKVTREE 13

initializing data structures
sorting suffixes according to prefix of length 9
sorting all buckets
create file "EcoliO157H7.llv"
create file "EcoliO157H7.bck"
create file "EcoliO157H7.suf"
create file "EcoliO157H7.sti1"
create file "EcoliO157H7.bwt"
create file "EcoliO157H7.prj"
create file "EcoliO157H7.al1"
create file "EcoliO157H7.skp"
overall space peak: main=32.46 MB (6.22 bytes/symbol), secondary=10.50 MB

The previous call of mkvtree has constructed several index files:

$ ls -l EcoliO157H7.*
-rw-r----- 1 kurtz gistaff 37 2005-02-01 23:18 EcoliO157H7.al1
-rw-r----- 1 kurtz gistaff 2097152 2005-02-01 23:18 EcoliO157H7.bck
-rw-r----- 1 kurtz gistaff 5471381 2005-02-01 23:18 EcoliO157H7.bwt
-rw-r----- 1 kurtz gistaff 30 2005-02-01 23:18 EcoliO157H7.des
-rw-r----- 1 kurtz gistaff 5471377 2005-02-01 23:18 EcoliO157H7.lcp
-rw-r----- 1 kurtz gistaff 1031440 2005-02-01 23:18 EcoliO157H7.llv
-rw-r----- 1 kurtz gistaff 5471376 2005-02-01 23:18 EcoliO157H7.ois
-rw-r----- 1 kurtz gistaff 186 2005-02-01 23:18 EcoliO157H7.prj
-rw-r----- 1 kurtz gistaff 8 2005-02-01 23:18 EcoliO157H7.sds
-rw-r----- 1 kurtz gistaff 5471377 2005-02-01 23:18 EcoliO157H7.sti1
-rw-r----- 1 kurtz gistaff 21885508 2005-02-01 23:18 EcoliO157H7.suf
-rw-r----- 1 kurtz gistaff 5471376 2005-02-01 23:18 EcoliO157H7.tis

Of course, we can also construct an index from more than one file. Suppose we have two bacterial
genomes in the files mgen.fna and mpneu.fna: The genome of M. genitalis and the genome
of M. pneunomiae.

$ ls -l mgen.fna mpneu.fna
-rw-r----- 1 kurtz users 589593 Oct 23 18:53 mgen.fna
-rw-r----- 1 kurtz users 829789 Oct 23 18:53 mpneu.fna

$ mkvtree -dna -pl -bck -tis -lcp -suf -indexname bac -db mgen.fna mpneu.fna

Since there are two input files, we have to give a name bac for the index, using the option
-indexname. Since we have not used the verbose option -v, the program works silently.

Now let us consider an example where we construct an index from a set of protein sequences
given in SWISSPROT-format. The corresponding input file swissp.sp.gz is in gzip format.
After gunzipping the file, the contents looks like this:

$ zcat swissp.sp.gz
ID 110K_PLAKN STANDARD; PRT; 296 AA.
AC P13813;
DT 01-JAN-1990 (Rel. 13, Created)

2 MKVTREE 14

DT 01-JAN-1990 (Rel. 13, Last sequence update)
DT 01-FEB-1994 (Rel. 28, Last annotation update)
DE 110 KD ANTIGEN (PK110) (FRAGMENT).
OS Plasmodium knowlesi.
OC Eukaryota; Alveolata; Apicomplexa; Haemosporida; Plasmodium.
RN [1]
RP SEQUENCE FROM N.A.
RX MEDLINE; 88039002.
RA PERLER F.B., MOON A.M., QIANG B.Q., MEDA M., DALTON M., CARD C.,
RA SCHMIDT-ULLRICH R., WALLACH D., LYNCH J., DONELSON J.E.;
RT "Cloning and characterization of an abundant Plasmodium knowlesi
RT antigen which cross reacts with Gambian sera.";
RL Mol. Biochem. Parasitol. 25:185-193(1987).
DR EMBL; M19152; AAA29471.1; -.
DR PIR; A54527; A54527.
KW Malaria; Antigen; Repeat.
FT NON_TER 1 1
FT DOMAIN 131 296 13.5 X 12 AA TANDEM REPEATS OF E-E-T-Q-K-
FT T-V-E-P-E-Q-T.
SQ SEQUENCE 296 AA; 34077 MW; 666F88DF CRC32;

FNSNMLRGSV CEEDVSLMTS IDNMIEEIDF YEKEIYKGSH SGGVIKGMDY DLEDDENDED
EMTEQMVEEV ADHITQDMID EVAHHVLDNI THDMAHMEEI VHGLSGDVTQ IKEIVQKVNV
AVEKVKHIVE TEETQKTVEP EQIEETQNTV EPEQTEETQK TVEPEQTEET QNTVEPEQIE
ETQKTVEPEQ TEEAQKTVEP EQTEETQKTV EPEQTEETQK TVEPEQTEET QKTVEPEQTE
ETQKTVEPEQ TEETQKTVEP EQTEETQKTV EPEQTEETQN TVEPEPTQET QNTVEP

//

We use the gzipped-file like any other file. mkvtree automatically recognizes that it is in
gzipped format (due to the suffix .gz). It gunzips the file internally, and extracts the required
sequence information. Of course, any other sequence formats can also be in gzipped format.

$ mkvtree -protein -db swissp.sp.gz -pl -lcp -suf -tis -ois -bwt -bck -v
reading gzipped file "swissp.sp.gz"
maximal value for argument of option -pl is 2, recommended value is 2
total length of sequences: 4566 (including 7 separators)
alphabet of size 21: LVIFKREDAGSTNQYWPHMCX
creating file "swissp.sp.gz.tis"
creating file "swissp.sp.gz.ois"
creating file "swissp.sp.gz.des"
creating file "swissp.sp.gz.sds"
creating file "swissp.sp.gz.lcp"
initializing data structures
sorting suffixes according to prefix of length 2
sorting all buckets
creating file "swissp.sp.gz.llv"
creating file "swissp.sp.gz.bck"
creating file "swissp.sp.gz.suf"
creating file "swissp.sp.gz.bwt"
creating file "swissp.sp.gz.prj"
creating file "swissp.sp.gz.al1"
overall space peak: main=0.18 MB (40.80 bytes/symbol), secondary=0.00 MB

3 MKDNA6IDX 15

The description of the sequences is extracted from the ID-field and the DE-field of the SWIS-
SPROT-entry. For the first sequence, stored in the input file swissp.sp.gz, mkvtree extracts
the following description:

110K_PLAKN 110 KD ANTIGEN (PK110) (FRAGMENT).

We now consider a Fasta-File with two protein sequences:

$ cat Proteinseq
>
QPTFFLLPPGEGGAESYFNNIVKRRQTNMFILNNYYFHSKRIRTIEELAEMYLDQVRG
>
QGPTLFLLPPGEGGSYFNNIVKRLRQTNMVVFNNYYLHSKRLRTFEELAEMYLDQVRG

We produce an index from this file, applying the symbol mapping TransProt11:

$ mkvtree -db Proteinseq -smap TransProt11 -pl -allout -v
reading file "Proteinseq"
maximal value for argument of option -pl is 1, recommended value is 1
total length of sequences: 117 (including 1 separator)
alphabet "LVIFKREDAGSTNQYWPHMCXUBZ*-" (size 26) mapped to "i+-sonaphmcx" (size 12)
create file "Proteinseq.tis"
create file "Proteinseq.ois"
create file "Proteinseq.des"
create file "Proteinseq.sds"
create file "Proteinseq.lcp"
initializing data structures
sorting suffixes according to prefix of length 1
sorting all buckets
create file "Proteinseq.llv"
create file "Proteinseq.bck"
create file "Proteinseq.suf"
create file "Proteinseq.sti1"
create file "Proteinseq.bwt"
create file "Proteinseq.prj"
create file "Proteinseq.al1"
create file "Proteinseq.skp"
overall space peak: main=0.13 MB (1171.36 bytes/symbol), secondary=0.00 MB

Note that the fourth line of the output reports that the input alphabet is the usual amino acid
alphabet including some wildcards, while the transformed alphabet is of size 12.

3 mkdna6idx: generating a six frame translation index

mkdna6idx is very similar to mkvtree. While mkvtree can handle sequences over arbitrary
alphabets, mkdna6idx requires DNA-sequences as input. It generates two indices, namely:

• A flat index indexname for the the given DNA sequences. It mainly consists of the two
files indexname.tis and indexname.ois. This index is mainly used for output purpose.

3 MKDNA6IDX 16

• An index indexname.6fr for the given DNA sequences translated in all six reading frames.
This is used for computing the matches.

These two indices allow vmatch to compute matches on the protein level.

The program is called as follows:

mkdna6idx options

And here is a description of the options:

-db dbfiles
Specify a non empty list of database files separated by white spaces. Each database file
contains sequences in one of the following formats: Fasta, Genbank, EMBL, and SWIS-
SPROT. The user does not have to specify the input format. However, the format of all
files has to be identical. The sequence must consist of characters over the alphabet a, c, g,
t, or u (in lower or upper case), or wildcards n, s, y, w, r, k, v, b, d, h, m. White spaces
in the input files are ignored. This option is mandatory. This option is identical with the
same option of the program mkvtree.

-smap mapfile
Specify the file storing the symbol mapping applied to the amino acid symbols after the
six frame translation. If the given mapfile cannot be found in the directory where mkvtree
is run, then all directories specified by the environment variable MKVTREESMAPDIR are
searched. If defined correctly, this contains a list of directory paths separated by colons
(‘:’). For example, if one uses the csh or the tcsh, the definition of the environment-
variable could look like this:

setenv MKVTREESMAPDIR "$HOME/vstree:/usr/vstree/TRANS"

For the bash or the sh the definition could look like

MKVTREESMAPDIR="$HOME/vstree:/usr/vstree/TRANS"
export MKVTREESMAPDIR

Then, if mapfile is not available in the current directory, mkvtree searches for mapfile in the
two given directories. It scans the directory-list from left to right. As soon as it has found
the file it stops. If the file cannot be found, an error message is reported and the program
exits with error code 1. See Appendix B for a more detailed explanation of the format of
the symbol mapping file.

-transnum t
Specify the number of the codon translation table used for the six frame translation. t must
be a number in the range [1,23] except for 7, 8, 17, 18, 19 and 20. Table 3 gives the possible
numbers and their names. The codon translation tables, their numbers, and their names
were taken from ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt. If
this option is not used, then the standard codon translation table (number 1) is used.

ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt

4 VSEQINFO 17

-indexname filepath
Specify filepath to be the name of the index, later referred to by indexname. This option
is mandatory, if more than one database file is given and if additionally at least one file
comprising the index is stored (i.e. if any of the output options is used). If no file from the
index is stored, then this option is not allowed. If there is only one database file, and this
option is not given, then indexname is the basename of the given filepath, i.e. the filename
stripped by the directory path where it is stored. The filepath can be a complete path.

-tis

Store the table tistab in file indexname.6fr.tis.

-ois

Store the table oistab in file indexname.6fr.ois.

-v

Be verbose, that is, give reports about the different steps as well as the resource require-
ments of the computation. This option is recommended.

-version

Show the version of the program. Also report the compilation date and the compilation
options.

-help

Show a summary of all options and terminate.

An example application of mkdna6idx is given in section 9.9.4.

4 vseqinfo: Obtaining Sequence Information

vseqinfo echoes for each database sequence its length and its description. The program has
no options. It takes exactly one argument, namely the index name. The output goes to standard
out.

4.1 Applying vseqinfo

We can obtain the information about the database sequences in atEST.

$ vseqinfo atEST
0 275 gi|5587835|gb|AF078689.1|AF078689 AF078689 Arabidopsis thaliana lib
1 852 gi|4714049|dbj|C99932.1|C99932 C99932 Arabidopsis thaliana library
2 719 gi|4714048|dbj|C99931.1|C99931 C99931 Arabidopsis thaliana library
3 746 gi|4714047|dbj|C99930.1|C99930 C99930 Arabidopsis thaliana library
4 668 gi|4714046|dbj|C99929.1|C99929 C99929 Arabidopsis thaliana library
5 800 gi|4714045|dbj|C99928.1|C99928 C99928 Arabidopsis thaliana library

5 VSTREE2TEX 18

1 Standard
2 Vertebrate Mitochondrial
3 Yeast Mitochondrial
4 Mold Mitochondrial; Protozoan Mitochondrial; Coelenterate Mitochondrial; My-

coplasma; Spiroplasma
5 Invertebrate Mitochondrial
6 Ciliate Nuclear; Dasycladacean Nuclear; Hexamita Nuclear
9 Echinoderm Mitochondrial

10 Euplotid Nuclear
11 Bacterial
12 Alternative Yeast Nuclear
13 Ascidian Mitochondrial
14 Flatworm Mitochondrial
15 Blepharisma Macronuclear
16 Chlorophycean Mitochondrial
21 Trematode Mitochondrial
22 Scenedesmus Obliquus Mitochondrial
23 Thraustochytrium Mitochondrial

Table 3: The possible codon translation table numbers and table names.

5 vstree2tex: Pretty Printing a Virtual Tree

The program vstree2tex produces a representation of a virtual suffix tree in LATEX-format
and outputs it to standard out.

Note that vstree2tex should only be used for very small indexes since it produces large
output files. Suppose the total length of all sequences in the index is n. If the option -s is not
used, then the output size of vstree2tex is about 10n bytes per option. (plus some constant
number of bytes for the header and the footer of the LATEX-file). If the option -s is used, then the
size of the output is proportional to n2. The program is mainly designed for debugging a program
based on the index and for educational purposes.

The program is called as follows:

vstree2tex [options] indexname

And here is a description of the options:

-s

Output the suffixes. The ith separator symbol in a multiple sequence is shown as i.

-tis

Output table tistab. The ith separator symbol in a multiple sequence is shown as i.

-ois

5 VSTREE2TEX 19

Output table oistab. The ith separator symbol in a multiple sequence is shown as i.

-suf

Output table suftab.

-sti1

Output table stitab1.

-bwt

Output table bwttab. The ith separator symbol in a multiple sequence is shown as i.

-bck

Output table bcktab.

-lcp

Output table lcptab.

-skp

Output table skptab.

-help

Show a summary of all options and terminate with exit code 0.

5.1 Applying vstree2tex

Suppose a file with the following contents:

>a short sequence
acaaacatat

Let us construct the corresponding index:

$ mkvtree -dna -db smallseq.fna -pl -allout

Now run vstree2tex to produce the table in LATEX-format:

$ vstree2tex -ois -suf -bwt -bck -lcp -s smallseq.fna > tmp.tex

Then the command

$ latex tmp.tex

produces Table 4.

6 VSEQSELECT 20

Table 4: The output of vstree2tex after applying LATEX to it.

i oistab suftab lcptab bwttab Ssuftab[i]

0 a 2 c aaacatat$
1 c 3 2 a aacatat$
2 a 0 1 acaaacatat$
3 a 4 3 a acatat$
4 a 6 1 c atat$
5 c 8 2 t at$
6 a 1 0 a caaacatat$
7 t 5 2 a catat$
8 a 7 0 a tat$
9 t 9 1 a t$

10 10 0 t $

w bcktab[ϕ(w)]
a (0,5)
c (6,7)
g (1,0)
t (8,9)

6 vseqselect: Selecting Sequences

The program vseqselect selects sequences from a given index and prints them on standard
out.

The program is called as follows:

vseqselect [options] indexname

And here is a description of the options:

-minlength α

Select a sequence only if it is not shorter than α .

-maxlength ω

Select a sequence only if it is not longer than ω .

-seqnum filename
Select the sequences with the numbers given line by line in file filename.

-randomnum k
Randomly select k sequences from the index.

-randomlength `
Randomly select sequences from the index until the total length of the selected sequences
is ` or larger.

-help

Show a summary of all options and terminate with exit code 0.

6 VSEQSELECT 21

The options -randomnum, -randomlength, and -seqnum cannot be pairwise combined. How-
ever, each of these options can be combined with the option -minlength, and -maxlength.
This allows the selection of sequences by random or by numbers specified in a file, satisfying
additional constraints.

6.1 Applying vseqselect

Let us start with an example which randomly selects 3 sequences of length between 100 and 200
from the index atEST.

$ vseqselect -randomnum 3 -minlength 100 -maxlength 200 atEST
>gi|2764371|gb|T46124.1|T46124 9387 Lambda-PRL2 Arabidopsis thaliana cDNA clone 135
CCAAGCTCACATCCGATGCAGCCTTGGACCCCGCTGGTCTTGTNGCTGTCGCTGTGGCTC
ACGTCTTTNCCCTTTNNGTTGGTGTTTCCATAGCCGNCAACATCTCCGGCGGACACCTTA
ACCCCGCCGTNACACTTCGGTCTCGCCGTCGGTGGCAACATCACAG
>gi|3868949|dbj|AB015100.1|AB015100 AB015100 RIKEN-PMB-FL1 Arabidopsis thaliana cDN
TTTTTTGATGATGACAAGGTCTTAGCTTTGGTGGACATAACTCCCCAGGGTCCTGTTCAC
ATCCTCCTTATTCAAAAAGTGAGGGATGGCCTAACTGGCCTCTCTAAGGCTGAGGAAAGG
CACATCGACATCTTGGGCCACCTACTCTACACTGCCTAACTTTTCTCAAAACAAAAAGGC
CTAGCA
>gi|2764374|gb|T46197.1|T46197 9460 Lambda-PRL2 Arabidopsis thaliana cDNA clone 138
AATTTTTTTTNATTTCAGCAAAAAAGCAAAGGACTATACAGGTGATGGACATTCATGACA
TNCCTAAACCTAAGAAAGGTGGATTTTNCCCAAGAAAAGGCGGGAGTNCTCAAGGTGGTA
GACACNGGTAAATTGAGAAAGATGAGAGTTAAGTNAGGAAGAGAAAAAAAGACAGAGANC
AAAGCTCTGTTTCT

For each selected sequence which appears in the output, lines of the following form are output
on standard error:

0: select sequence with number 1579 (length 166)
1: select sequence with number 161 (length 186)
2: select sequence with number 1576 (length 194)

The first number in each line is always the consecutive number of the selected sequences.

Alternatively we can randomly select sequences of some total length:

$ vseqselect -randomlength 300 -minlength 30 -maxlength 99 atEST
>gi|4713981|dbj|C99855.1|C99855 C99855 Arabidopsis thaliana library (Motohashi R) A
CCCGCCCTTTNAANCGAGTACAANACNGGGGGAAANGTTCCGAATAAAAAGTGGGG
>gi|4713999|dbj|C99875.1|C99875 C99875 Arabidopsis thaliana library (Motohashi R) A
TGGGGCNACCANCAANCTAANGAAGATCGAATTGGACACACTCNCGTCTATCACGCCAAC
ANCNCTGCATCTCTGTCTGCCCNATACGACTGCACGTG
>gi|4210234|gb|AI239394.1|AI239394 EST093 Arabidopsis pSMASH Library Arabidopsis th
ATACAACAATGGCTTCGTCATCTACAAGTATCTCTCTCCTTCTCTTCGTCTCTTTCCTTC
TTCTTCTCGTTAACTCGCGTGCAGAGAATGCGTGG
>gi|4210216|gb|AI239376.1|AI239376 EST078 Arabidopsis pSMASH Library Arabidopsis th
TAAGGCAATGCAAGCTTTGATCTTTCTTGGTTTCTTGGGCACTTCATGTCTCGCTCAAGC
TCCTGCACCAGCACCAACC

Now suppose we have stored the following sequence numbers in a file called myseqnum:

7 VSUBSEQSELECT 22

69
51
109
127

Then the program call

\$ vseqselect -seqnum myseqnum atEST

produces the same result as the previous call. A final example shows how to search for all
sequences whose description matches the pattern T46124.1:

$ vseqselect -matchdesc T46124.1 atEST
>gi|2764371|gb|T46124.1|T46124 9387 Lambda-PRL2 Arabidopsis thaliana cDNA clone 135
CCAAGCTCACATCCGATGCAGCCTTGGACCCCGCTGGTCTTGTNGCTGTCGCTGTGGCTC
ACGTCTTTNCCCTTTNNGTTGGTGTTTCCATAGCCGNCAACATCTCCGGCGGACACCTTA
ACCCCGCCGTNACACTTCGGTCTCGCCGTCGGTGGCAACATCACAG

7 vsubseqselect: Selecting Subsequences

The program vsubseqselect selects subsequences from a given index and prints them on
standard out, either line by line or in FASTA format. The selection can either be random or
according to position ranges specified by the user.

The program is called as follows:

vsubseqselect [options] indexname

And here is a description of the options:

-minlength α

Select subsequences from the index whose minimum length is α .

-maxlength ω

Select subsequences from the index whose maximum length is ω .

-snum k
Select k sequences from the index in the specified length range (as given by the options
-minlength and -maxlength).

-range k l
Report the substring in the index starting at position k and ending at position l.

-seq l n r
Report the substring in the index of length l in sequence number n starting at the relative
position r.

7 VSUBSEQSELECT 23

-help

Show a summary of all options and terminate with exit code 0.

The three options -minlength, -maxlength, and -snum can only be used in combination with
each other. No other option can be combined with any of these options. The combination of these
options delivers sequences s0,s1, . . . ,sk−1, such that for all i ∈ [0,k−1] the following holds: If i
is even, then si occurs in the index. If i is odd, then the reverse of si occurs in the index. Options
-range and -seq exclude each other. Hence there are basically three choices of options:

• If the options -minlength, -maxlength, and -snum with argument k is used, then k sub-
sequences are randomly selected, all of which occur in the given index. The lengths of the
selected sequences are evenly distributed over the interval [α,ω]. Besides the sequences,
the distribution of the length ranges of the selected subsequences is reported.

• If the option -range is used with two arguments k and l, then the substring starting at
position k and ending at position l is shown.

• If the option -seq is used with three arguments l, n, and r, then the substring of length n
in sequence number l starting at the relative position r is shown.

7.1 Applying vsubseqselect

The following command shows how to randomly select 5 subsequences of length between 30
and 40 from the index atEST:

$ vsubseqselect -minlength 30 -maxlength 40 -snum 5 atEST
agtttacttttctctcttcttgttttctgtgttggaag
tccttactgacttagtcatactcttctcaatc
cccattttatttcctctcaaatgctttccgtagt
atagtaagtaaaattgaactactgttattgagtt
gtttcttgtgtttgtgcttacgatactttcctc
1 subsequences of length 32
1 subsequences of length 33
2 subsequences of length 34
1 subsequences of length 38

Now suppose we want to select the first 30 residues of index swissp.sp.gz:

$ vsubseqselect -range 0 29 swissp.sp.gz
>110K_PLAKN 110 KD ANTIGEN (PK110) (FRAGMENT). swissp.sp.gz [0,29]
FNSNMLRGSVCEEDVSLMTSIDNMIEEIDF

8 VMIGRATE.SH 24

8 vmigrate.sh: Migrating an Index

Some of the files comprising the virtual suffix tree contain integers in binary format. Such a
binary format is not portable to a different computer architecture in general, since the byte order
for 2-byte or 4-byte integers may differ. However, in some cases the user wants to construct
a virtual suffix tree on a machine with large memory (e.g. a SUN-Sparc Server) and then use
the virtual suffix tree on a machine with much less memory (e.g. a Linux-Laptop). For such a
case the user should copy all files to the Laptop and then call vmigrate.sh indexname. This
transforms the index with name indexname. That is, it reverses the byte order for all files con-
taining 4-byte integers. A second call vmigrate.sh indexname results in the original files, i.e.
it reverses the first transformation. The shell-script vmigrate.sh calls a program vendian
which performs the transformation for the appropriate files. It is part of the virtual suffix tree
distribution. vmigrate.sh takes the index as an argument and does not have any options.

8.1 Applying vmigrate.sh

Suppose we have created a very large index vlsi using mkvtree on a large, say SUN-server.
This index cannot directly be used on our Linux-machine. So we convert it as follows:

$ vmigrate.sh vlsi
migrate the indexfile vlsi.bck llv suf sds ssp skp
Converting vlsi.bck
Converting vlsi.llv
Converting vlsi.suf
Converting vlsi.sds
Converting vlsi.ssp
Converting vlsi.skp
Done.

The conversion of the byte order is only done for the files containing integers. The size of each
converted file remains unchanged.

9 vmatch: Solving Matching Tasks

The program vmatch allows to solve a multitude of different matching tasks over an index
constructed by mkvtree. Each matching task is solved by a combination of options specifying

• the input,

• the kind of matches sought,

• additional constraints on the matches,

9 VMATCH 25

• the direction of the matches (in case of DNA),

• the kind of postprocessing to be done,

• the output mode and output format.

Additionally, if there is more than one algorithm to solve a certain matching task, vmatch allows
to specify which algorithm is to be used.

vmatch allows to compute the following kinds of matches:

(1) match all substrings of the database sequences against itself. The matches can be one of
the following kinds:

(a) branching tandem repeats, i.e. repeats where the two instances of the repeat occur at
consecutive positions

(b) maximal repeats, i.e. pairs of maximal substrings occurring more than once in the
database sequences

(c) supermaximal repeats, i.e. pairs of maximal substrings occurring more than once in
the database sequences, but not in any other maximal repeat

(2) match a set of query sequences (given in an extra query file) against the index. The matches
can be one of the following kinds:

(a) maximal substring matches, i.e. the substrings of the query sequences matching sub-
strings of the database sequences. All matches exceeding some minimum length,
extended maximally to the left and to the right, are reported.

(b) maximal unique matches, i.e. the substrings of the query sequences matching sub-
strings of the database sequences. A match is reported if it is unique in the database
sequences as well as in the query sequences.

(c) complete matches, i.e. a query sequence must completely match (i.e. from the first
character to the last character) a substring of the database sequences.

For all these match kinds, the matches themselves can be direct or palindromic (i.e. on the
reverse strand, in case of DNA sequences). If required, DNA sequences are translated into six
reading frames and the matches are computed on the protein level, and reported on the DNA level.
Besides exact matches, also degenerate matches with a maximal number of errors (insertions,
deletions, and mismatches) are supported. Moreover, degenerate matches can be derived from
exact matches by extending these using a greedy extension strategy. This does not apply to
complete matches.

For all different match kinds, the matches delivered by vmatch can be selected according to
their E-value, their identity value, or their match score.

9 VMATCH 26

In the default case, a match is reported as a formatted row of numbers, containing its lengths, the
positions where it occurs, the E-value, the number of errors it contains, the match score, and the
identity value. Optionally, an alignment of the sequences that are involved in the match can be
reported.

An important feature of vmatch is the capability of directly postprocessing the matches found
in the following ways:

(i) inverse output, i.e. report substrings of the database sequences or the query sequences not
covered by a match

(ii) masking substrings of the database sequences or the query sequences covered by a match

(iii) clustering of a set of database sequences according to the matches found between these
sequences. The output of this option can be a representation of the clusters, or a set of
sequences each being representative for a cluster.

(iv) chaining of a set of matches, i.e. finding optimal subsets of all matches which do not cross

(v) clustering of matches according to the pairwise similarities on the sequences involved in
the match.

(vi) clustering of matches according to the positions where they occur.

Finally, to accommodate many more kinds of user defined post processing tasks, vmatch pro-
vides the concept of selection functions. These provide an open interface which allow arbitrary
on-the-fly postprocessing of the matches without output and parsing of the matches. For more
details on this concept, see Appendix E.

Since the different kinds of matches can be postprocessed in different ways, using different
direction of matches, or additional match constraints, or output modes, or output formats, the
number of possible combinations of options is very large. Ignoring trivial variations of options
(to e.g. modify the output format), we have generated 1386 different combinations of options. In
Section 9.9 we can only give 43 examples for a few number of combinations of options.

vmatch is called as follows.

vmatch options indexname

The last argument of vmatch is always the indexname. This can be a complete path. The output
of vmatch goes to standard output. vmatch currently has 39 options, described on about 9
pages of this manual. To allow a new user, to get acquainted with the program, we have divided
the options into different categories. An overview of the option categories with a short one-line
description of each option is given in table 5.

9 VMATCH 27

Table 5: Overview of the vmatch-Options sorted by Categories

Input parameter
-q specify files containing queries to be matched
-dnavsprot perform six frame translation of DNA

Kind of matches
-tandem compute right branching tandem repeats
-supermax compute supermaximal matches
-mum compute maximal unique matches
-complete specify that query sequences must match completely

Postprocessing of matches
-dbnomatch mask all database substrings containing a match
-qnomatch show all query substrings not containing a match
-dbmaskmatch mask all database substrings containing a match
-qmaskmatch mask all query substrings containing a match
-dbcluster cluster the database sequences
-nonredundant generate file with non-redundant set of sequences;
-pp generic postprocessing of matches
-selfun specify shared object file containing selection function

Algorithms
-online run algorithms online without using the index
-qspeedup specify speedup level when matching queries

Direction of matches
-d compute direct matches (default)
-p compute palindromic (i.e. reverse complemented matches)

Match constraints
-l specify that match must have the given length
-h specify the allowed hamming distance > 0
-e specify the allowed edit distance > 0
-allmax show all maximal matches in the order of their computation
-seedlength specify the seed length
-hxdrop specify the xdrop value for hamming distance extension
-exdrop specify the xdrop value for edit distance extension
-leastscore specify the minimum score of a match
-evalue specify the maximum E-value of a match
-identity specify minimum identity of match in range [1..100%]

Output modes
-sort sort the matches, additional argument is mode
-best show the best matches (those with smallest E-values)
-i give information about number of different matches

Output formats
-s show the alignment of matching sequences
-showdesc show sequence description of match
-f show filename where match occurs
-absolute show absolute positions
-nodist do not show distance of match
-noevalue do not show E-value of match
-noscore do not show score of match
-noidentity do not show identity of match

Miscellaneous
-v verbose mode
-version show the version of the Vmatch package
-help show basic options
-help+ show all options

9 VMATCH 28

9.1 Input Options

-q queryfiles
Specify the query files containing the queries to match against the indexed database se-
quences. The names of the query files are separated by white spaces. Each query file can
be in FASTA-, EMBL-, SWISSPROT-, or GENBANK format. The format of all files has to
be identical. If none of the four formats is used, then the program exits with error code 1.
Each file can be in gzipped compressed format, in which case the file must have the ending
.gz.

-dnavsprot t [mapfile]
Match six frame translation of query sequences against the protein sequence index. First
argument t specifies the number of the codon translation table used for the six frame trans-
lation of the query. t must be a number in the range [1,23] except for 7, 8, 17, 18, 19
and 20. Table 3 gives the possible numbers and their names. The codon translation tables
were taken from the website ftp://ftp.ncbi.nih.gov/entrez/misc/data/
gc.prt. The second optional argument is a filename containing a symbol mapping for
DNA sequences. This is used for reading the query sequences. If the second argument
is missing, then the standard DNA symbolmap is used, as if option -dna was used for
mkvtree. When matching the six frame translation of the query against the index, the
symbol mapping is used that was supplied to mkvtree, when computing the index.

9.2 Matchkind Options

-tandem

Compute branching tandem repeats for an index which only contains database sequences.
This option requires the use of the option -l to specify the minimum length of the branch-
ing tandem repeats to be reported. A tandem repeat is a sequence that occurs more than
once in the database sequence at consecutive positions. For a precise definition of the
notion branching repeat, see the end of Appendix A.

-supermax

Compute supermaximal repeats for an index which only contains database files. This op-
tion requires the use of option -l to specify the minimum length of the supermaximal
repeats to be reported. A repeat is a sequence that occurs more than once in the database
sequence. A repeat is supermaximal if it never occurs as a substring of any other maximal
repeat. Suppose that a maximal repeat of length l occurs at positions i0, i1, . . . , ik−1. Then
we report all pairs of positions iq and ip such that q ∈ [0,k−1], p ∈ [0,k−1], and iq < ip,
together with the usual information as reported for the other kinds of repeats.

-mum [cand]
Compute maximal substring matches which are unique, both in the the database sequences
and in the query sequences. Such matches are called maximal unique matches. If the

ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt
ftp://ftp.ncbi.nih.gov/entrez/misc/data/gc.prt

9 VMATCH 29

optional argument cand is used, then MUM-candidates are computed, i.e. maximal sub-
string matches that are unique in the database but not necessarily in the query sequence.
This option requires the use of the option -l to specify the minimum length of the matches
to be reported. Additionally, the option -q is required.

-complete [remred]
Match each query sequence completely against the indexed database sequences. In this
case, a query sequences is also called pattern. This option only works in conjunction with
option -q. The pattern can be a sequence of characters (sequence pattern) over the same
alphabet as the database. If this option is used together with the options -online and -e,
then an additional argument remred removes redundant matches from the output.

If none of the matchkind options is given, then vmatch searches for maximal substring matches.

9.3 Postprocessing Options

-dbnomatch r [flag]
Compute substrings of length at least r in the database sequences which are not part of a
match computed according to the remaining options. This works as follows: instead of
showing the match in the usual way, the positions covered by a match are marked and
finally only those substrings which are not marked are output if their length is at least r.
The optional argument flag can be any of the following values:

• keepleft means that the left instance of the match is not marked.

• keepright means that the right instance of the match is not marked.

• keepleftifsamesequence means that the left instance of the match is not marked
whenever the right instance of the match occurs in the same sequence.

• keeprightifsamesequence means that the right instance of the match is not marked
whenever the left instance of the match occurs in the same sequence.

Note that the left instance of a match is always the part of the match in the indexed database
sequences. If the index is compared to itself, then right instance of a match is also in the
indexed database sequences. If query sequences are matched against the index, then the
right instance of a match is in the query sequences. Note that positions that are covered by
a match but that are not marked due to the use of one of these flags, may still be missing
in the output, because they may be marked by the left or the right instance of a different
match. This option was called -allunique in a previous version of this program when
comparing an index against itself.

-qnomatch r
Compute substrings of length at least r in the query sequences which are not part of a
match computed according to the remaining options. The query files containing the query

9 VMATCH 30

sequences then have been specified with the option -q either given to mkvtree or to
vmatch.

-dbmaskmatch (tolower|toupper|X) [flag]
Compute substring matches but do not output them. Instead, output the complete database
sequence in FASTA format and mask the matching substrings. One of the two keywords
tolower or toupper or a single character X must be used as an argument. It determines
how the matches are masked:

• If the argument to this option is tolower, then all characters of the matching sub-
strings are transformed from upper case to lower case. This requires that all charac-
ters in the database sequences are in upper case.

• If the argument to this option is toupper, then all characters of the matching sub-
strings are transformed from lower case to upper case. This requires that all charac-
ters in the database sequences are in lower case.

• If the argument to this option is a single visible character, say X, then all characters
of the matching substrings are replaced by X.

The optional argument flag can be any of the following values:

keepleft

keepright

keepleftifsamesequence

keeprightifsamesequence

If flag is used, then it has the same semantics as for option -dbnomatch. After showing
all masked sequences, and extra line reports the number of symbols masked. This line
is shown on stderr. If the environment variable VMATCHCOMMENTTOSTDOUT is set to the
value on, then the line is shown on stdout.

-qmaskmatch (tolower|toupper|X)
Compute substring matches but do not output them. Instead, output the complete query
sequence in FASTA format and mask the matching substrings. This option requires the
option -q specifying query files. The additional argument specifies how the matches are
masked. The semantics is as in option -dbmaskmatch.

-dbcluster psmall plarge [filenameprefix] (minclsize,maxclsize)]
Cluster the database sequences according to the matches found in a self comparison of the
index. psmall and plarge are integers in the range [0,100]. Initially each database sequence
is put into its own cluster. Then the matches are computed, but they are not shown. In-
stead, they are evaluated to form single linkage clusters. In particular, consider a match
between two database sequences, where the smaller of these sequences is of length `small
and the larger of these sequences is of length `large. Whenever both match instances cover

9 VMATCH 31

at least psmall% of the smaller sequence and plarge% of the larger sequence (or equivalently
when the smaller of both match instances is of length (`small · psmall)/100 and the larger is
of length (`large · plarge)/100), then the clusters containing these two sequences are joined.
After computing all matches, the clusters are output. The given cluster numbers are con-
secutive numbers beginning with 0. Suppose that the argument filenameprefix is specified.
Then additional information about the clusters is reported:

• For each cluster, say with number i, a file filenameprefix.s.i.match is generated stor-
ing all matches which were used to form cluster i. s is the size of the cluster with
number i. The matches are reported in the same format as described in Section 9.9,
and the format can be modified by the corresponding output options. However, note
that the option -s does not give you the alignment in the .match-file. To obtain this,
one can apply the program vmatchselect to the matchfile. vmatchselect -s

gives the alignment for each sequence involved in a match.

• If the option -s (see below) is specified, then for each cluster, say with number i, a
file named filenameprefix.s.i.fna is generated. s is the size of the cluster, and the file
stores all sequences contained in cluster i in multiple FASTA format. This includes
the description of the sequence prefixed by the sequence number.

If the third optional argument is used, then there may be a fourth optional argument of
the form (minclsize,maxclsize). minclsize and maxclsize are integers satisfying the following:
minclsize≥ 1 and minclsize≤ maxclsize or maxclsize = 0. If maxclsize = 0, then this is interpreted
as ∞. If minclsize and maxclsize are specified, then the .match and .fna file for a cluster are
only output if the cluster has at least minclsize and at most maxclsize elements. The singleton
sequences of the index, i.e. those sequences not contained in any cluster are output in a
single file named filenameprefix.single.fna if minclsize = 1 and if the option -s is used.
Note that in some Unix-shells the symbols (and) have special meaning. So it may be
necessary to quote the argument (minclsize,maxclsize), so that the shell does not evaluate it.
For example, single quotes work for the C-Shell and the Bourne-Shell.

Note that most of the options determining the matches to search for, can be combined with
the option -dbcluster. The corresponding holds for the options determining the output
format of the matches. Note also that the option -s has a slightly different meaning when
used in combination with -dbcluster. It produces the additional .fna files containing
the sequences of a cluster.

-nonredundant filename
Output a set of non-redundant sequences stored in the index. The output is in FASTA format
and goes to file filename. The option only works in combination with option -dbcluster.
The non-redundant sequences are determined in the following way: All sequences are
clustered according to the given options. For each cluster we output the longest sequence
from that cluster, including its description, to obtain a FASTA formatted file.

-pp chain chain-parameter

9 VMATCH 32

Specify that matches should be chained. chain-parameter is a sequence of the following
keywords (each optionally followed by some value):

Keyword meaning
global global chaining
local local chaining
wf specify weight factor
maxgap specify maximal gap width
outprefix specify prefix of output files

When prepending the symbol - to a keyword, one obtains an option of the separate pro-
gram chain2dim. All strings in chain-parameters that are not keywords, are considered to be
arguments of the preceeding option. For example,

-pp chain local 10p wf 1.8 maxgap 10

is translated into the options

-local 10p -wf 1.8 -maxgap 10

of the program chain2dim. This program is part of the Vmatch-distribution and its options
are described in a separate manual. We refer to this chain2dim-manual for a comprehen-
sive description of these options and the meaning of the five keywords in turn. Note that
chain2dim reads the matches from a match file before it does the chaining. In contrast
vmatch computes matches, stores them internally, and then performs chaining.

-pp matchcluster matchcluster-parameter
Specify that matches should be clustered. matchcluster-parameter is a sequence of the follow-
ing keywords (each optionally followed by some value):

Keyword meaning
erate specify maximum error rate for similarity clustering
gapsize specify maximum gapsize for gap clustering
overlap specify minimum percentage of overlap for overlap clustering
outprefix specify prefix of output files

When prepending the symbol - to a keyword, one obtains an option of the separate pro-
gram matchcluster. All strings in matchcluster-parameter that are not keywords, are consid-
ered to be arguments of the preceeding option. For example,

-pp matchcluster erate 35 outprefix clout

is translated into the options

9 VMATCH 33

-erate 35 -outprefix clout

of the program matchcluster. This program is part of the Vmatch-distribution and its op-
tions are described in a separate manual. We refer to this matchcluster-manual for a com-
prehensive description of these options and the meaning of the four keywords in turn. Note
that matchcluster reads the matches from a match file before it computes clusters. In con-
trast vmatch computes matches, stores them internally, and then performs the clustering
step.

-selfun filename [extraargs]
Access file filename, which must be a shared object file containing a selection function bun-
dle. If the access to such a selection function bundle is not possible, then the program
terminates with error code 1. If filename is not an absolute path (i.e., it does not begin with
a forward slash (‘/’), then the file is searched for in the colon-separated list of directo-
ries specified by the environment variable LD_LIBRARY_PATH. For details on selection
functions see Section E. filename must have the appropriate extension. This depends on the
particular platform. For most Unix-platforms the extension .so is valid. For HP-UX, the
valid file extension is .sl. Option -filename can be followed by an optional list extraargs
of extra arguments (not beginning with the symbol -). These are ignored by vmatch
and vmatchselect. Since they are stored in the argument vector passed to the function
selectmatchHeader (see Section E), they can be evaluated in the selection function
bundle.

9.4 Algorithm Options

-online

Run online algorithms where possible. These do not use the index, except for the original
and the transformed input sequences, and are therefore more space efficient. However,
the online algorithms usually run not as fast as the index based algorithms. We currently
provide this option for three different matching tasks:

• match a substring of the query sequences against an index with or without allowing
for errors.

• match each query sequence completely against an index with or without allowing for
errors

This option only works together with option -q.

-qspeedup i
vmatch provides two algorithms to compute maximal exact substring matches of a data
base and a query. We may later add more algorithms. The output of the algorithms are
identical. You can select each of these algorithms, termed Algorithm i for i ∈ {0,2} by the
appropriate choice of i:

9 VMATCH 34

• Algorithm 0 is the most space efficient algorithm. If there are not many long exact
matches between the query sequences and the database sequences, then the algorithm
is about as fast as Algorithm 2.

• Algorithm 1 is no longer available.

• Algorithm 2 requires n bytes more space than Algorithm 0. If there are many long
exact matches between the query sequences and the database sequences, then this
Algorithm is faster than Algorithm 0.

These algorithms are applied only if you specify query files using the option -q, or if
you are searching for palindromic matches in a self comparison of the index. The default
algorithm is Algorithm 2.

9.5 Direction Options

-d

Report direct matches. This option can be combined with option -p.

-p

Report palindromic matches in case one is searching DNA sequences. This option can be
combined with option -d. If neither option -d nor -p is used, then only direct matches are
reported.

9.6 Matchconstraint Options

-l ` [mingapsize] [maxgapsize]
Specify the length value `. This must be a positive integer. Only matches of length at least
` are reported. The optional arguments mingapsize and maxgapsize can be specified when
searching repeats. mingapsize and maxgapsize are (possibly negative) integers specifying the
minimum and the maximum gap size between the two instances of a repeat. If maxgapsize is
specified, then also mingapsize must be specified. If maxgapsize is not specified, then no upper
bound on the gap size is specified. Both optional arguments can be negative specifying
that the repeat instances may overlap. For an explanation of the effect of these optional
arguments, consider a repeat specified by four integers (l, i,r, j). l is the length of first
instance of the repeat. r is the length of second instance of the repeat. i is the start position
of the left instance, and j is the start position of the right instance of the repeat. Note that
i < j. If i+ l−1 > j, then the gapsize g of the repeat is −(i+ l− j). If i+ l−1≤ j, then
the gapsize g of the repeat is j− (i+ l− 1). The repeat is accepted if g ≥ mingapsize and
g≤ maxgapsize, provided maxgapsize is defined.

-h k
Specify the allowed hamming distance > 0. This is the hamming distance option, which
only allows mismatches in matches. If this option is used together with option -l, then

9 VMATCH 35

substring matches are sought such that the two instances of the match contain at most k
mismatches. Here the mandatory argument k is a positive integer. If this option is used
together with option -complete, then complete matches are sought, and the mandatory
argument k specifies the number of mismatches allowed in the match. k can have three
different forms:

• If k is a positive integer, then this specifies the absolute number of mismatches al-
lowed.

• If k is of the form ip, where i is a positive integer, then up to i
100 ·m mismatches are

allowed in a match. Here m is the length of the current query to be searched. Thus
the character p specifies the mismatch rate as a percentage of the query length. This
mode is called the percentage search mode.

• If k is of the form ib, where i is a positive integer, then in a first search phase, the
minimum number, say q, of mismatches is determined, which still delivers at least
one match for the given query. Then all matches with exactly q mismatches are
reported. The range of values for q to try in the first phase can be controlled by the
positive integer. That is, q must be smaller than or equal to i

100 ·m. This mode is
called the best search mode.

-e k
Specify the allowed edit distance > 0. This is the edit distance option, which allows
differences, i.e. mismatches, insertions, and deletions in matches. If this option is used
together with option -l, then substring matches are sought such that the two instances
of the match contain at most k differences. Here the mandatory argument k is a positive
integer. If this option is used together with option -complete, then complete matches are
sought, and the mandatory argument k specifies the number of differences allowed in the
match. k can have three different forms:

• If k is a positive integer, then this specifies the absolute number of differences al-
lowed.

• If k is of the form ip, where i is a positive integer, then up to i
100 ·m differences are

allowed in a match. Here m is the length of the current query to be searched. Thus
the character p specifies the difference rate as a percentage of the query length. This
mode is called the percentage search mode.

• If k is of the form ib, where i is a positive integer, then in a first search phase, the
minimum number, say q, of differences is determined, which still delivers at least one
match for the given query. Then all matches with exactly q differences are reported.
The range of values for q to try in the first phase can be controlled by the positive
integer. That is, q must be smaller than or equal to i

100 ·m. This mode is called the
best search mode.

Be very careful when you choose the parameter k and do not use the option -complete.
The running time of the program is very dependent on k. More precisly, it grows faster than

9 VMATCH 36

k2l. A reasonable value for k is in the range [1,10] (as was restricted in earlier program
versions).

-allmax

Report all maximal matches, in the order in which they are found. We do not recommend
to use this option. It is mainly used for compatibility with the program REPuter.

-seedlength m
Set the length of the exact seeds. This option is only allowed together with one of the
options -e, -h, -exdrop, or -hxdrop. If options -e or -h is used, then the seed length is
the maximum of b`/(k+1)c and m, where the argument m is a positive integer, k is the
argument for options -e or -h, respectively, and ` is the argument for option -l. If options
-exdrop or -hxdrop is used, then the seed length is m. The user should carefully consider
the choice for m if using either option -e or -h: if m is larger than b`/(k+1)c, vmatch
may miss some matches of length at least ` with the specified number k of errors. If the
options -exdrop or -hxdrop is used, but not -seedlength, then the default value for the
seed length is 30.

-hxdrop X
Specify the Xdrop-score X when extending a seed in both directions allowing only for
matches and mismatches. The argument X must be a positive integer smaller or equal to
255. Matches are scored 2 and mismatches are scored −1. The extension process stops as
soon as the extension involving matches and mismatches has a score smaller than T −X
where T is the largest score seen so far. This option requires that one of the options -l,
-leastscore, -evalue or -identity is used to restrict the matches. The minimum length
of the seeds is specified by the argument to option -seedlength. If this option is not used,
then the default value for the seed length is 30.

-exdrop X
Specify the Xdrop-score X when extending a seed in both directions allowing for matches,
mismatches, insertions, and deletions. The argument X must be a positive integer smaller
or equal to 255. Matches are scored 2, mismatches are scored −1, and indels are scored
−2. The extension procedure is further explained in Appendix C. This option requires that
one of the options -l, -leastscore, -evalue or -identity is used. The minimum length
of the seeds is specified by the argument to option -seedlength. If this option is not used,
then the default value for the seed length is 30.

-leastscore ls
Specify the least score ls a match must have to be reported. That is, if an optimal alignment
of the matching sequences has score smaller than the positive integer ls, then it is not
reported. The score of the alignment is computed from the match/mismatch/indel scores
as defined above.

-evalue e
Specify the maximum E-value e a match must have to be reported. That is, if a match has

9 VMATCH 37

an E-value larger than the floating point value e, then it is not reported. The argument e to
this option must either be 0.0 or ≥ 1.0 ·10−300.

-identity q
Specify the minimum identity value q a match must have to be reported. The identity
value of a match is defined by 100 · (1− d

l) where l is the maximum of the lengths of the
substrings s1 and s2 involved in the match and d is the number of mismatches and indels
in the optimal alignment of s1 and s2. Thus, if the identity value of the match is strictly
smaller than the positive integer q, then it is not reported.

9.7 Output Options

-sort mode
sort the reported matches according to the given mode. The following modes are available:
la: sort in ascending order of length
ld: sort in descending order of length
ia: sort in ascending order of first position
id: sort in descending order of first position
ja: sort in ascending order of second position
jd: sort in descending order of second position
ea: sort in ascending order of E-value
ed: sort in descending order of E-value
sa: sort in ascending order of score
sd: sort in descending order of score
ida: sort in ascending order of identity
idd: sort in descending order of identity

If used for vmatch, then this option requires to also use the option -best.

-best m
Report at most the best m matches. m is a positive integer. The matches are reported
according their E-value, their length, and their start position (in this order). That is, if
two matches are compared, the most important value is their E-value. The match with the
smaller E-value is “better”. If both matches have the same E-value, then the longer match
is “better”. If both matches have the same E-value and are of the same length, then their
first start position matters, and the matches with the smaller start position is “better”. The
reported matches satisfy the given length and error constraints.

-i

Do not show matches, but a distribution (preview information) about the length of the
different matches found.

-s [q] [flag]
Additionally report an alignment of the two instances of the match. The optional integer

9 VMATCH 38

argument q specifies the linewidth. That is, the alignments or matching substrings are
formatted to q symbols per line. If q is not specified, then the default linewidth is 60. For
details see Section 9.9. The optional argument flag can be any of the following five values:

• abbrev means that the matching substrings of an exact match or a hamming distance
match are shown in abbreviated form. That is, the exact matching substring is shown
verbatim, while for a hamming distance match a mismatching pair of characters, say
a in the left instance of the match and c in the right instance of the match, are shown
as [ac]. The output of an edit distance match is not affected by this flag.

• abbreviub has the same meaning as abbrev, except that each pair of different sym-
bols in a match containing only mismatches is shown as a single IUB-character, ac-
cording to the following table:

A C G T
A m r w
C m s y
G r s k
T w y k

Note that a mismatch of a wildcard character, say n, with a symbol a is still reported
as [na] or [an] since there is no IUB-character for denoting the set consisting of a and
n. The output of an edit distance match is not affected by this flag.

• leftseq means that only the sequence information of the left instance of a match is
reported.

• rightseq means that only the sequence information of the right instance of a match
is reported.

• xml means that the entire output is in XML-format, see an example in section 9.9.2.

-showdesc m
Instead of the sequence number, show the descriptions of the sequences. The mandatory
argument m can have three forms:

• If m is a positive integer, then up to the first m symbols of the descriptions of the
sequences are shown.

• If m is 0, then the descriptions of the sequences is shown up to the first white space
character. If there is no such character, then the complete description is shown.

• If m is of the form (skipprefix,maxlength) where skipprefix and maxlength are non-
negative integers, then the initial skipprefix symbols of the sequence descriptions are
skipped. Moreover, if maxlength > 0, then up to maxlength remaining symbols are
shown. If maxlength is 0, then the remaining symbols of the description are shown
up to first white space character. If there is no such white space character, then the
remaining part of the description is shown.

9 VMATCH 39

White spaces in the descriptions are replaced by the symbol _, so that each description is
shown in a single column of the output. This simplifies parsing of the output file.

-f

Additionally report the filename the match instance is contained in.

-absolute

Show the absolute positions instead of pairs of sequence numbers and relative positions.

-nodist

Do not show the distance value of a match.

-noevalue

Do not report the E-value of a match.

-noscore

Do not report the score of a match.

-noidentity

Do not report the identity value of a match.

The previous four options reduce the size of the output considerably, and in a lot of cases also
the running time of the program. This is especially true when comparing an index against itself.
Then the matches are computed so fast that the generation of the output takes a considerable
share of the total running time. Note however, that the options -noevalue and -nodist produce
output that cannot parsed by the program vmatchselect.

9.8 Miscellaneous Options

-v

Be verbose, that is, give reports about the different steps as well as the resource require-
ments of the computation. Additionally, it produces an initial explanation of the format in
which the matches are shown.

-help

Show a summary of all basic options and terminate with exit code 0.

-help+

Show a summary of all options and terminate with exit code 0.

Note the following when combining options of vmatch:

1. Option -seedlength can only be used in combination with exactly one of the options -h,
-e, -hxdrop, and -exdrop.

9 VMATCH 40

2. Option -online only works together with option -q.

3. Option -complete only works together with option -q.

4. Option -mum only works together with option -l.

5. Option -super only works together with option -l.

6. Option -tandem only works together with option -l.

7. Option -allmax only works together with either option -h or option -e.

8. Option -nonredundant only works together with option -dbcluster.

9. Option -qspeedup only works together with either option -query or option -p.

10. Options -hxdrop and -exdrop can only be used in combination with at least one of the
options -l, -leastscore, -identity, or -evalue.

11. If option -complete is not used, then either option -l or -exdrop or -hxdrop must be
used.

12. If option -complete is not used, then options -e or -h require to use option -l.

Table 6 shows all 102 combinations of options that cannot be pairwise combined.

If the options -best, -allmax, and -complete are not used, then for each seed a best match,
i.e. one with a minimum E-value is output. The matches are enumerated in the order as they are
found. There is no limit on the number of matches reported.

9.9 Applying vmatch

9.9.1 Self Comparison

Using the index atEST generated by mkvtree (see Section 2.2), we perform a self comparison
of the database sequences, searching for exact duplicates of length at least 350 in atEST:

$ vmatch -v -l 350 atEST
args=-v -l 350 atEST
matches are reported in the following way
l(S) n(S) r(S) t l(S) n(S) r(S) d e s i
where:
l = length
n = sequence number
r = relative position
t = type (D=direct, P=palindromic)
d = distance value (negative=hamming distance, 0=exact, positive=edit distance)
e = E-value
s = score value (negative=hamming score, positive=edit score)
i = percent identity

9 VMATCH 41

Table 6: Options of vmatch that cannot be combined with each other. The entries are meant to
be symmetric. That is, if option a cannot be combined with option b, then option b cannot be
combined with option a.

option cannot be combined with option
-dnavsprot -supermax -tandem -dbcluster -nonredundant

-online -supermax -tandem -dbcluster -nonredundant

-l -complete

-q -supermax -tandem -dbcluster -nonredundant

-complete -dbcluster -nonredundant -allmax -mum -supermax

-tandem -seedlength -hxdrop -exdrop -qspeedup

-mum -supermax -tandem

-supermax -tandem -p -qspeedup

-tandem -allmax -h -e -hxdrop -exdrop -qnomatch -qmaskmatch

-p -qspeedup -dbcluster -nonredundant

-i -dbcluster -nonredundant -pp -sort -showdesc -absolute

-f -dbnomatch -dbmaskmatch -qmaskmatch -qnomatch

-nodist -noevalue -noscore -noidentity -s

-h -e -hxdrop -exdrop

-e -hxdrop -exdrop

-hxdrop -exdrop

-allmax -best -sort -hxdrop -exdrop -leastscore -evalue

-identity

-showdesc -absolute

-dbnomatch -nodist -noevalue -noscore -noidentity -dbcluster

-nonredundant -dbmaskmatch -qmaskmatch -qnomatch

-pp

-qnomatch -nodist -noevalue -noscore -noidentity -dbcluster

-nonredundant -pp

-dbmaskmatch -nodist -noevalue -noscore -noidentity -dbcluster

-nonredundant -qmaskmatch -pp

-qmaskmatch -nodist -noevalue -noscore -noidentity -dbcluster

-nonredundant -pp

-pp -sort

9 VMATCH 42

(S) = in Subject
file=atEST 999815 772376
databaselength=772375 (including 1951 separators)
sequence lengths: minimal=56, maximal=1102, average=394.68
alphabet of size 5: acgtn
atEST.tis read
atEST.bwt read
atEST.suf read
atEST.lcp read
atEST.llv read
atEST.ssp read
find direct substring matches (repeats)

388 79 236 D 388 1495 180 0 4.22e-223 776 100.00
517 64 0 D 517 65 0 0 0.00e+00 1034 100.00
392 229 0 D 392 270 0 0 1.65e-225 784 100.00
369 736 141 D 369 1151 85 0 1.16e-211 738 100.00
402 78 363 D 402 1488 146 0 1.57e-231 804 100.00
369 902 54 D 369 1151 87 0 1.16e-211 738 100.00
367 736 143 D 367 902 54 0 1.86e-210 734 100.00

overall space peak: main=0.07 MB (0.09 bytes/symbol), secondary=5.18 MB (7.03 bytes/symbol)

In all examples, the symbol $ is the prompt, after which user input consisting of the called
program plus the arguments are shown. In the line beginning with # args=, the arguments of
vmatch are echoed. Additionally, the verbose option gives us the remaining lines marked by
the symbol #. They explain, in abbreviated form, the meaning of the different columns. Each
of the remaining lines, if not marked by the symbol # in the first column, reports a match by
showing the following items from left to right:

(1) The length of the left instance of the match.

(2) The number, say i, of the input sequence, the left instance of the match occurs in. The
input sequence numbers are counted from 0.

(3) The relative position of the left instance of the match in sequence i.

(4) A character D for direct matches and a character P for palindromic matches.

(5) The length of the right instance of the match.

(6) The number, say j, of the input sequence, the right instance of the match occurs in. The in-
put sequence numbers are counted from 0. If the right instance occurs in a query sequence,
then j is relative to the first query sequence.

(7) The relative position of the right instance of the match in sequence j.

(8) The distance of the match. An exact match has distance 0. A k-mismatch match with k > 0
mismatches has distance −k. A k-differences match with k > 0 differences has distance k.

(9) The E-value of the match.

(10) The score of the match. The score is computed from the optimal alignment of the left
and the right instance of the match. Matching characters in the alignment are scored 2,

9 VMATCH 43

mismatching characters are scored −1, and indels (i.e. insertions and deletions) are scored
−2.

(11) The identity value 100 · (1− d
max{l1,l2}) of the match where l1 and l2 are the lengths of the

match instances s1 and s2 and d is the number of mismatches and indels in the optimal
alignment of s1 and s2.

Now let us search for palindromic matches with a minimum length of 200, but allowing for up to
one mismatch. Instead of a sequence number we output the corresponding sequence description
using the option -showdesc 10. We additionally report the alignments of the different matches.
This alignment is formatted to 60 characters per line. The matching sequences (on the Sbjct-
lines) only contain a few mismatches. Each such mismatch between, say character c1 in the left
instance of the match (upper line) and character c2 in the right instance of the match (lower line),
is emphasized by the symbol !.

$ vmatch -p -l 200 -h 1 -showdesc 10 -s 60 atEST
args=-p -l 200 -h 1 -showdesc 10 -s 60 atEST

218 gi|3719113 0 P 218 gi|3450463 75 -1 6.18e-118 -433 99.54
Sbjct: TGAATTGGCAAAGTCTATAAAAAGACCCAAAAATAATACAATGAAAAGGAGAAAAGACAG 60
Sbjct: TGAATTGGCAAAGTCTATAAAAAGACCCAAAAATAATACAATGAAAAGGAGAAAAGACAG 135

Sbjct: AAGCAAATATTGGAGATCACTAAGATGCGCATGTTGATCACTGCTGGGCACATTGCACAC 120
Sbjct: AAGCAAATATTGGAGATCACTAAGATGCGCATGTTGATCACTGCTGGGCACATTGCACAC 195

Sbjct: GCTGAGCACCGCCTGGGTGATCTTCCTCATCGTCATCATAAGCCTCTCTTTGAGCTTGCG 180
Sbjct: GCTGAGCACCGCCTGGGTGATCTTCCTCATCGTCATCATAAGCCTCTCTTTGAGCTTGCG 255

Sbjct: CCTTCCTTTTCATCTCATCCTCAATGTTCACATCATGC 218
!

Sbjct: CCTTCCTTTTCATCTCATCCTCAATGGTCACATCATGC 293

209 gi|3719089 0 P 209 gi|3450056 231 0 2.48e-115 418 100.00
Sbjct: AAAAGTTTTGAAACTCTTCTATACACATACATTCTCCGGATGTGGTTGTTACTAACTTCA 60
Sbjct: AAAAGTTTTGAAACTCTTCTATACACATACATTCTCCGGATGTGGTTGTTACTAACTTCA 291

Sbjct: AAATATAAAAATTTAACAAAACAATTGTTATCATCATTTCCTACGAGTCATTAAACCCAA 120
Sbjct: AAATATAAAAATTTAACAAAACAATTGTTATCATCATTTCCTACGAGTCATTAAACCCAA 351

Sbjct: TCCCACTCGCCGTCGCCGGAAAACACCTCGGAAAATCAGCCACCGAAAACGATCTCCAGG 180
Sbjct: TCCCACTCGCCGTCGCCGGAAAACACCTCGGAAAATCAGCCACCGAAAACGATCTCCAGG 411

Sbjct: CACAAAAACCCAACGACGACTGAGACGAA 209
Sbjct: CACAAAAACCCAACGACGACTGAGACGAA 440

We only show the initial first 10 characters of the description. Note that this time we did not use
the verbose option. The output contains one match with a single mismatch and one exact match.

Instead of an alignment, we can also report both sequences involved in the match:

$ vmatch -p -l 230 -hxdrop 3 -showdesc ’(3,7)’ -s abbrev atEST
args=-p -l 230 -hxdrop 3 -showdesc (3,7) -s abbrev atEST

231 3719145 131 P 231 3719112 80 -12 2.70e-103 -426 94.81

9 VMATCH 44

AA[TA][CT]C[TC]TT[GT][AG]A[TA][GT]GGGAGAA[NG]ATAAAGAGAGTCAC[
GV]ATATGCTTAGACAAGG[AT]TTCACTCATGCATTTTCGATGACCTTTGAGAACAAAG
ATGGTTACGTCGCCTTCACAAGCCATCCTCTTCATGTTGAATTCTCA[NG]CCGCTTTCA
CCGCCGTCATCGACAA[NG]ATCGTTCTCCTCGATTTCCCCGTCGCCGCTGTCAAATCTT
CCGTTGTTGCAACACCATGAATCTTGT

Here each mismatch between, say c1 in the left instance of the match and c2 in the right instance
of the match, is reported as [c1c2]. Also note, that we use option -showdesc ’(3,7)’ to skip the
first 3 characters of the description and to show only the first 7 characters from the beginning of
the rest. As an alternative we can use option -s abbreviub to report a mismatch of c1 and c2 as
a single IUB character (provided both c1 and c2 are not wildcard symbols).

$ vmatch -p -l 230 -hxdrop 3 -showdesc ’(3,7)’ -s abbreviub atEST
args=-p -l 230 -hxdrop 3 -showdesc (3,7) -s abbreviub atEST

231 3719145 131 P 231 3719112 80 -12 2.70e-103 -426 94.81
AAWYCYTTKRAWKGGGAGAA[NG]ATAAAGAGAGTCAC[GV]ATATGCTTAGACAAGGWT
TCACTCATGCATTTTCGATGACCTTTGAGAACAAAGATGGTTACGTCGCCTTCACAAGCC
ATCCTCTTCATGTTGAATTCTCA[NG]CCGCTTTCACCGCCGTCATCGACAA[NG]ATCG
TTCTCCTCGATTTCCCCGTCGCCGCTGTCAAATCTTCCGTTGTTGCAACACCATGAATCT
TGT

Instead of showing the two matching sequences at once, we can report the left or the right instance
of the the match, using the argument leftseq or rightseq. This also works for inexact matches:

$ vmatch -p -l 379 -exdrop 3 -s 60 leftseq atEST
args=-p -l 379 -exdrop 3 -s 60 leftseq atEST
> 379 299 0 P 387 883 53 22 1.14e-168 700 94.32
AAAAGTTTTGAAACTCTTCTATACACATACATTCTCCGGATGTGGTTGTTACTAACTTCA
AAATATAAAAATTTAACAAAACAATTGTTATCATCATTTCCTACGAGTCATTAAACCCAA
TCCCACTCGCCGTCGCCGGAAAACACCTCGGAAAATCAGCCACCGAAAACGATCTCCAGG
CACAAAAACCCAACGACGACTGAGACGAATAAATTACCAAAAGACCCTTGACTCCTAGGA
TACAACGGAGGAAGCTTCTTCATCTGATGTTGATGATGATGTAGCTGCCTCGGAGGAGAT
CCAGAAGTCGTCGGWYTTGATCCCGGCGACGAGTCACCTCCGGAAGAAGATCCTTCTCCG
GTCATCACACCAGCGGCAA

Now consider an example where we combine the search for direct and palindromic matches. At
most 4 differences between the matches are allowed.

$ vmatch -d -p -l 300 -e 4 -showdesc 10 atEST
args=-d -p -l 300 -e 4 -showdesc 10 atEST

407 gi|4239690 217 D 407 gi|3449444 161 2 1.46e-227 808 99.51
351 gi|4714047 172 D 349 gi|4714044 173 4 3.05e-188 688 98.86
341 gi|4714044 181 D 341 gi|4714011 252 4 2.85e-182 670 98.83
331 gi|3450456 49 D 328 gi|3450037 75 3 4.62e-179 650 99.09
331 gi|3450456 49 D 328 gi|3449788 108 3 4.62e-179 650 99.09
328 gi|3450488 88 D 331 gi|3450456 49 3 4.62e-179 650 99.09
331 gi|3450456 49 D 328 gi|3450203 164 3 4.62e-179 650 99.09
324 gi|3450456 56 D 322 gi|3450093 276 4 3.99e-172 634 98.77
300 gi|3449391 0 D 300 gi|3449385 49 3 1.59e-160 591 99.00
430 gi|4714045 219 D 430 gi|4714034 337 4 1.89e-235 848 99.07
300 gi|3719179 121 P 301 gi|3719092 0 4 2.09e-158 589 98.67
314 gi|3719089 0 P 317 gi|3450056 123 4 5.98e-168 619 98.74

9 VMATCH 45

Note that, except for option -p, all previously used options for vmatch can also be used for
protein sequences. Here is an example involving the index Proteinseq, we constructed earlier:

$ vmatch -s -l 50 -exdrop 2 Proteinseq
args=-s -l 50 -exdrop 2 Proteinseq
57 0 1 D 56 1 2 3 2.36e-47 104 94.74
Sbjct: PTFFLLPPGEGGAESYFNNIVKR-RQTNMFILNNYYFHSKRIRTIEELAEMYLDQVRG 58

= !! ! === = = =
Sbjct: PTLFLLPPGEGG--SYFNNIVKRLRQTNMVVFNNYYLHSKRLRTFEELAEMYLDQVRG 58

Note that, in the alignment, the line between the matching sequences contains the symbols ! and
=. As usual, the symbol ! emphasizes mismatches, or insertions, or deletions in the correspond-
ing alignment column. The symbol ! emphasizes columns with different characters, that are
equivalent according to the given symbol mapping. For example, the symbols F and L in column
3 are equivalent according to the symbol map TransProt11.

Consider some more examples on the computation of maximal repeats for the Ecoli O157:H7
genome, for which we have earlier constructed an index. To determine the appropriate param-
eter set for computing matches, we recommend to start with the option -i. This reports the
distribution of the length of the matches, but not the match positions or matching sequences.

$ vmatch -i -l 12 EcoliO157H7
args=-i -l 12 EcoliO157H7
all 1507204
12 1066546
13 301935
14 88735
15 27097
16 8845
17 3753
18 1693
19 1088
20 895
21 476
22 537
23 528
24 323
25 200
26 517
27 136
28 180
29 278

This output shows the distribution of the length of all matches of length at least 12. The line
starting with the keyword all reports the total number of the maximal repeats of length ≥ 12.
Then each line of the form

` k

9 VMATCH 46

reports that there are k direct repeats of length exactly `. The output (of which only the first 20
lines are shown), reports that there are more 1 million exact repeats of length 12, and 301935
exact repeats of length 13. We conclude that the minimum length of 12 or 13 is probably not
selective enough to compute repeats in the Ecoli O157:H7 genome. A minimum length value of
15 or larger seems to be more appropriate.

We can also quickly get an overview of the number of very long repeats. For example, let us
compute the number of matches of length at least 4000 with exact seeds of length 30 (the default
seed length) and identity of 85% or more.

$ vmatch -i -exdrop 5 -l 4000 -identity 85 EcoliO157H7
args=-i -exdrop 5 -l 4000 -identity 85 EcoliO157H7
all 223
4113 3
4289 29
4884 36
5446 39
5480 19
6147 16
7494 21
7753 46
83654 14

Instead of restricting the length of the matches, we can restrict the E-value. In the following
example, we compute all matches with seed length 20 and E-value smaller than 10−100:

$ vmatch -seedlength 20 -exdrop 5 -evalue 10e-100 EcoliO157H7
args=-seedlength 20 -exdrop 5 -evalue 10e-100 EcoliO157H7
2793 0 1654897 D 2812 0 1725693 249 0.00e+00 4858 91.15
1840 0 1280857 D 1848 0 1725693 89 0.00e+00 3421 95.18
7753 0 1272934 D 7773 0 1647113 496 0.00e+00 14038 93.62
2013 0 4746246 D 2017 0 4842428 60 0.00e+00 3850 97.03
3212 0 1267826 D 3216 0 1862616 82 0.00e+00 6182 97.45
2294 0 1641528 D 2278 0 1862438 297 0.00e+00 3681 87.05
2439 0 2688397 D 2440 0 2909349 108 0.00e+00 4555 95.57
395 0 2688268 D 396 0 3492312 123 0.00e+00 422 68.94
502 0 1639778 D 513 0 1860288 94 1.20e-117 733 81.68
451 0 1251809 D 449 0 1628124 79 3.46e-107 663 82.48
6147 0 1287968 D 6141 0 1917801 828 0.00e+00 9804 86.53
665 0 922807 D 670 0 1290526 247 0.00e+00 594 63.13

Now suppose we want to compute only the best 10 palindromic repeats, ordered in descending
order of their length. We also want to allow a few errors in the repeats.

$ vmatch -p -l 1000 -best 10 -exdrop 1 -sort ld EcoliO157H7
args=-p -l 1000 -best 10 -exdrop 1 -sort ld EcoliO157H7
9441 0 1904945 P 9441 0 2124427 12 0.00e+00 18846 99.87
3873 0 1335481 P 3873 0 2949532 33 0.00e+00 7647 99.15

9 VMATCH 47

2541 0 1251817 P 2541 0 2726937 12 0.00e+00 5046 99.53
2447 0 1070054 P 2447 0 2754267 7 0.00e+00 4873 99.71
2447 0 1465661 P 2447 0 2754267 7 0.00e+00 4873 99.71
2446 0 345353 P 2446 0 1070055 7 0.00e+00 4871 99.71
2446 0 345353 P 2446 0 1465662 7 0.00e+00 4871 99.71
2442 0 1070055 P 2442 0 4597374 4 0.00e+00 4872 99.84
2442 0 1465662 P 2442 0 4597374 4 0.00e+00 4872 99.84
2191 0 1923669 P 2191 0 2112243 36 0.00e+00 4274 98.36

The following example shows how to restrict the computation to supermaximal repeats (which
only works for direct repeats):

$ vmatch -supermax -l 2000 EcoliO157H7
args=-supermax -l 2000 EcoliO157H7
5031 0 1106367 D 5031 0 1501974 0 0.00e+00 10062 100.00

22545 0 1066894 D 22545 0 1462501 0 0.00e+00 45090 100.00
4256 0 1125607 D 4256 0 1521213 0 0.00e+00 8512 100.00
2433 0 1143845 D 2433 0 1539451 0 0.00e+00 4866 100.00
2430 0 345369 D 2430 0 4597386 0 0.00e+00 4860 100.00
8316 0 1058577 D 8316 0 1454184 0 0.00e+00 16632 100.00
4923 0 1120684 D 4923 0 1516291 0 0.00e+00 9846 100.00
5904 0 1114779 D 5904 0 1510386 0 0.00e+00 11808 100.00
2473 0 1112305 D 2473 0 1507913 0 0.00e+00 4946 100.00
2162 0 1129864 D 2162 0 1525470 0 0.00e+00 4324 100.00
9438 0 1132027 D 9438 0 1527633 0 0.00e+00 18876 100.00
6002 0 1100364 D 6002 0 1495971 0 0.00e+00 12004 100.00
2583 0 1896937 D 2583 0 2708503 0 0.00e+00 5166 100.00

10923 0 1089440 D 10923 0 1485047 0 0.00e+00 21846 100.00

Note that 14 supermaximal repeats are reported. Since there are 19 maximal repeats of length
≥ 2000 (see above), there are five maximal repeats which are not supermaximal. We can further
restrict the set of maximal repeats by only computing branching tandem repeats. We decide to
only report tandem repeats of length at least 50.

$ vmatch -tandem -l 50 EcoliO157H7
args=-tandem -l 50 EcoliO157H7

62 0 2658616 D 62 0 2658678 0 3.96e-25 124 100.00
282 0 1293997 D 282 0 1294279 0 1.39e-157 564 100.00
141 0 1294279 D 141 0 1294420 0 1.08e-72 282 100.00
162 0 2925000 D 162 0 2925162 0 2.46e-85 324 100.00
57 0 2099948 D 57 0 2100005 0 4.05e-22 114 100.00
87 0 670299 D 87 0 670386 0 3.52e-40 174 100.00
92 0 391492 D 92 0 391584 0 3.43e-43 184 100.00

141 0 4600881 D 141 0 4601022 0 1.08e-72 282 100.00

Note that tandem repeats can only be computed on the forward strand. Sometimes the option
-tandem is too restrictive, and one wants to allow short gaps between the match instances. This
can be done by supplying two extra arguments for the option -l.

9 VMATCH 48

$ vmatch -l 50 10 30 EcoliO157H7
args=-l 50 10 30 EcoliO157H7

94 0 3679583 D 94 0 3679693 0 2.15e-44 188 100.00
81 0 3679486 D 81 0 3679596 0 1.44e-36 162 100.00
72 0 411148 D 72 0 411242 0 3.78e-31 144 100.00
93 0 5218570 D 93 0 5218681 0 8.58e-44 186 100.00
86 0 5218473 D 86 0 5218585 0 1.41e-39 172 100.00
71 0 411544 D 71 0 411638 0 1.51e-30 142 100.00
70 0 411432 D 70 0 411525 0 6.04e-30 140 100.00
53 0 3086656 D 53 0 3086737 0 1.04e-19 106 100.00

9.9.2 Matching Queries against an Index

In the previous applications we had always compared the index against itself. This section shows
applications where query sequences are involved. The corresponding query files containing the
query sequences are specified via the option -q.

Computing Substring Matches: Let us match a DNA sequence in file U89959 against atEST
to find all direct substring matches of length at least 250 with at most 6 differences:

$ vmatch -l 250 -e 6 -q U89959 -s 70 atEST
args=-l 250 -e 6 -q U89959 -s 70 atEST

270 1265 63 D 269 0 72484 6 1.81e-135 521 97.78
Sbjct: AGTATGGGAAGCCCTGTCTCAGCCTNNGCTTCCAGCNTCTCCTCCTTCCACATCNTTAAAACTCCAACCT 133

! !!! ! !
Query: agtatgggaag-cctgtctcagccacggcttccagcctctcctccttccacatcattaaaactccaacct 72553

Sbjct: TGGAAGATTTTAGGAGAATGAGAGCGACACGCTCTGTGCTTCTTTTCCTTATGATCCAGCTCTTCCACGC 203
Query: tggaagattttaggagaatgagagcgacacgctctgtgcttcttttccttatgatccagctcttccacgc 72623

Sbjct: ACAAATGAACTATGAAACATATATAAAGCGCACACATATATTTATGCATATCAAGCTTTTGGTGATTATG 273
Query: acaaatgaactatgaaacatatataaagcgcacacatatatttatgcatatcaagcttttggtgattatg 72693

Sbjct: GTATTGATAGAGTCAAATTAAGCTCGGTGACTATGGTATTAATAAGAGTACTATTTCCTT 333
Query: gtattgatagagtcaaattaagctcggtgactatggtattaataagagtactatttcctt 72753

So by additionally using the option -q we tell vmatch to not do a self comparison, but to match
all query sequences against atEST. The right instance of the match is always in U89959, and this
file only contains one sequence. Hence the second reported sequence number (in column 6 of
the output) is always 0. Moreover, we have used the option -s 70 to report an optimal alignment
between the two match instances. The sequences in the alignment are marked by the keywords
Sbjct and Query. The Sbjct-line always shows the the left instance of the match (i.e. the
part in the indexed database sequence). The Query-line always shows the the right instance of
the match (i.e. the part in the query sequence). Alignment columns with insertions, deletions
or mismatches are marked by the symbol !. The last position of the alignment in every row is
shown on the right. If the match instances are longer than the width of a line, it is split into
different lines.

9 VMATCH 49

The output format is designed to contain all necessary information about the found matches. The
kind of information shown on each line can be distinguished according to the first character of
the line:

• If the first character of a line is the symbol #, then the rest is a comment. It, for example,
shows the arguments of the program. The user can also specify a comment line beginning
with

smallheading=

or with

largeheading=

followed by some user defined heading. This can be considered as an annotation, which
may be displayed in a graphical user interface visualizing the output of vmatch.

• If the first non-white space character is a digit, then this line shows the match record.

• If the first non-white space character is neither the symbol # nor a digit, then the line
shows the match instances, or an alignment of the match instances. In the latter case the
line begins with Sbjct or Query.

vmatch can also produce XML-output format. This is not designed for the human eye, but easy
to parse by standard XML-parsers. If we replace the parameter 70 of option -s by the keyword
xml and add the option -showdesc, then we obtain the following XML output:

$ vmatch -l 250 -e 6 -q U89959 -s xml -showdesc 0 atEST
<?xml version="1.0"?>
<!DOCTYPE Vmatchoutput PUBLIC "-//VMATCH//VMATCH Vmatchoutput/EN" "Vmatchoutput.dtd
<Vmatchoutput>

<Vmatchglobalparams>
<Vmatchversion>1.0</Vmatchversion>
<Vmatchindex>atEST</Vmatchindex>
<Vmatchquery>U89959</Vmatchquery>
<Vmatchnumofdbseq>1952</Vmatchnumofdbseq>
<Vmatchdatabaselength>772375</Vmatchdatabaselength>
<Vmatchnumofqueryseq>1</Vmatchnumofqueryseq>
<Vmatchquerylength>106972</Vmatchquerylength>
<Vmatchalphabet>

<Vmatchalphabetdomainsize>32</Vmatchalphabetdomainsize>
<Vmatchalphabetmapsize>5</Vmatchalphabetmapsize>
<Vmatchalphabetmappedwildcards>22</Vmatchalphabetmappedwildcards>
<Vmatchalphabetundefsymbol>253</Vmatchalphabetundefsymbol>
<Vmatchalphabetdomain>aAcCgGtTuUnsywrkvbdhmNSYWRKVBDHM</Vmatchalphabetdomain>
<Vmatchalphabetverbosechar>acgtn</Vmatchalphabetverbosechar>

</Vmatchalphabet>
</Vmatchglobalparams>
<Vmatchiterationmatches>

<Match>
<Vmatchmatchidnumber>0</Vmatchmatchidnumber>
<Vmatchlength1>270</Vmatchlength1>
<Vmatchseqnum1>1265</Vmatchseqnum1>
<Vmatchdescription1>gi|3449674|gb|AI099935.1|AI099935</Vmatchdescription1>
<Vmatchrelpos1>63</Vmatchrelpos1>
<Vmatchflag>D</Vmatchflag>

9 VMATCH 50

<Vmatchlength2>269</Vmatchlength2>
<Vmatchseqnum2>0</Vmatchseqnum2>
<Vmatchdescription2>Arabidopsis</Vmatchdescription2>
<Vmatchrelpos1>63</Vmatchrelpos1>
<Vmatchrelpos2>72484</Vmatchrelpos2>
<Vmatchdistance>6</Vmatchdistance>
<Vmatchevalue>1.81e-135</Vmatchevalue>
<Vmatchscore>521</Vmatchscore>
<Vmatchidentity>97.78</Vmatchidentity>
<DNA_eops>

<DNA_eop_type>match</DNA_eop_type>
<DNA_eop_length>11</DNA_eop_length>
<DNA_eop_type>deletion</DNA_eop_type>
<DNA_eop_length>1</DNA_eop_length>
<DNA_eop_type>match</DNA_eop_type>
<DNA_eop_length>12</DNA_eop_length>
<DNA_eop_type>mismatch</DNA_eop_type>
<DNA_eop_length>3</DNA_eop_length>
<DNA_eop_type>match</DNA_eop_type>
<DNA_eop_length>9</DNA_eop_length>
<DNA_eop_type>mismatch</DNA_eop_type>
<DNA_eop_length>1</DNA_eop_length>
<DNA_eop_type>match</DNA_eop_type>
<DNA_eop_length>17</DNA_eop_length>
<DNA_eop_type>mismatch</DNA_eop_type>
<DNA_eop_length>1</DNA_eop_length>
<DNA_eop_type>match</DNA_eop_type>
<DNA_eop_length>215</DNA_eop_length>

</DNA_eops>
</Match>

</Vmatchiterationmatches>
</Vmatchoutput>

The XML-output starts with some header giving the kind of output a name, in this case it is called
Vmatchoutput. The output of a single vmatch run is shown between <Vmatchoutput>
and </Vmatchoutput>. In the first part of the output some global parameters are defined,
like the name of the index and the query (if any). Their sizes and the numbers of sequences they
contain are also given. The alphabet of the given sequences is followed a list of matches. For
each match, its ID-number is given, and all important parameters, all tagged such that they are
easily identified by an XML-parser to process them by other tools. Since the option -showdesc

is given, the sequence number and the sequence description is reported. The match is completed
by an alignment in form of a sequence of edit operations. There are four kinds of edit operations,
namely match, deletion, insertion, and mismatch. For each of these operations a positive number
is specified which gives the number of character involved in the operation, i.e. the number of
characters matched, or deleted, etc.

Computing Maximal Unique Matches: In some applications it is helpful to restrict the set of
maximal substring matches to those which only occur exactly once in the database and once in
the query. That is, one wants to restrict to maximal unique matches. Using the option -mum,
we can compute these. In the following example, we only output the best 10 maximal unique
matches (out of 28828).

$ vmatch -mum -l 30 -q EcoliK12 -best 10 EcoliO157H7
args=-mum -l 30 -q EcoliK12 -best 10 /vol/vstree/src/vstree/src/doc/EcoliO157H7
2632 0 198385 D 2632 0 195040 0 0.00e+00 5264 100.00

9 VMATCH 51

2567 0 4189568 D 2567 0 3442567 0 0.00e+00 5134 100.00
2153 0 4184202 D 2153 0 3437201 0 0.00e+00 4306 100.00
1982 0 482323 D 1982 0 419564 0 0.00e+00 3964 100.00
1973 0 1234212 D 1973 0 1014741 0 0.00e+00 3946 100.00
1973 0 4725062 D 1973 0 3917861 0 0.00e+00 3946 100.00
1845 0 4186356 D 1845 0 3439355 0 0.00e+00 3690 100.00
1644 0 4171484 D 1644 0 3424482 0 0.00e+00 3288 100.00
1616 0 4154547 D 1616 0 3407602 0 0.00e+00 3232 100.00
1552 0 4195622 D 1552 0 3448621 0 0.00e+00 3104 100.00

There are 32236 maximal substring matches of length 30 or longer between the two Ecoli
genomes. The number of MUM-candidates of this length is 28828, and the number of maxi-
mal maximal unique matches is 28409.

Computing Complete Matches: Now suppose, we have a set of strings in a file ORFs:

$ cat ORFs
>orf1
CTCTTCCAGT
>orf1
GTCTAGGTTT

We want to match each of these strings completely against the index. We can use the option
-complete. We want to allow direct matches as well as palindromic matches. So we combine
option -d and -p. Option -s additionally reports the matching sequences. For palindromic
matches the reverse complement of the matching sequence is shown:

$ vmatch -complete -d -p -q ORFs -s -showdesc 10 atEST
args=-complete -d -p -q ORFs -s -showdesc 10 atEST

10 gi|2764223 272 D 10 orf1 0 0 4.14e-01 20 100.00
Sbjct: CTCTTCCAGT 282
Query: CTCTTCCAGT 10

10 gi|4714046 26 D 10 orf1 0 0 4.14e-01 20 100.00
Sbjct: GTCTAGGTTT 36
Query: GTCTAGGTTT 10

10 gi|4714003 10 D 10 orf1 0 0 4.14e-01 20 100.00
Sbjct: GTCTAGGTTT 20
Query: GTCTAGGTTT 10

10 gi|3449668 225 P 10 orf1 0 0 4.14e-01 20 100.00
Sbjct: AAACCTAGAC 235
Query: AAACCTAGAC 10

Consider another example where we have two patterns in a file called Patterns:

$ cat Patterns
>pattern 1

9 VMATCH 52

AGCTCTCTAGAGATAGA
>pattern 2
ATCGCCTATAAGAGACTCTCG

Both patterns do not occur in the Ecoli O157:H7 genome, as can easily be verified:

$ vmatch -complete -d -q Patterns EcoliO157H7
args=-complete -d -q Patterns EcoliO157H7

We want to know, if the patterns occur with up to 25% differences. The percentage is relative
to the length of the pattern. For the first pattern of length 18, 25% differences corresponds to
an absolute difference threshold of 4. For the second pattern of length 21, 25% differences
correspond an absolute difference threshold of 5. We can use the percentage search mode via
option -e 25p, this time only counting the number of matches:

$ vmatch -i -complete -e 25p -q Patterns EcoliO157H7
args=-i -complete -e 25p -q Patterns EcoliO157H7
all 145
14 2
15 9
16 18
17 23
18 35
19 22
20 20
21 9
22 7

Thus we obtain 145. Far more than we want to see. Maybe the pattern occurs with less than
4 respectively 5 differences in the genome. We can use the best search mode, to find the best
matches, i.e. those with the smallest number of differences:

$ vmatch -complete -e 25b -q Patterns -s EcoliO157H7
args=-complete -e 25b -q Patterns -s EcoliO157H7

17 0 1150435 D 18 0 0 3 3.22e+01 26 83.33
Sbjct: AGCTCGC-CGAGATAGGA 1150452

! !!
Query: AGCTCTCTAGAGATAGGA 18

20 0 3435749 D 21 1 0 4 2.58e+01 29 80.95
Sbjct: ATCGCCAAT-AGAG-CTGCTCG 3435769

! ! ! !
Query: ATCGCCTATAAGAGACT-CTCG 21

That is, for the first pattern we have found a match with three differences, and for the second
pattern a match with four differences.

9 VMATCH 53

9.9.3 Matching a DNA sequence against a Protein Index

Using the option -dnavsprot, we can match a DNA query sequence against an index built from
a protein sequence. The DNA sequence is translated in all six reading frames. The resulting
sequence of aminoacids is compared to the protein sequence. The position and length of the
match referring to the query are shown with respect to the original DNA sequence. Hence a
match of length l in the indexed protein database sequence is reported as a match of length 3l on
the codon level. Consider a file Codonseq.fna:

$ cat Codonseq.fna
>
TACTTCAACAACCGATTACGACAAACAAACATGGTAGTATTCAACAACTAC
TACTTACACTCAAAACGATTACGAACAAACATGTTCATATTAAACAACTAC

We match this file against the index Proteinseq, which was constructed earlier, using the
symbol mapping TransProt11:

$ vmatch -q Codonseq.fna -dnavsprot 1 -e 1 -l 19 -s Proteinseq
args=-q Codonseq.fna -dnavsprot 1 -e 1 -l 19 -s Proteinseq
28 1 15 F 84 0 0 0 2.71e-84 112 100.00
Sbjct: YFNNIVKRLRQTNMVVFNNYYLHSKRLR 43
Query: YFNNIVKRLRQTNMVVFNNYYLHSKRLR 28

27 0 16 F 84 0 0 1 9.03e-81 108 98.81
Sbjct: YFNNIVKR-RQTNMFILNNYYFHSKRIR 43

! === = =
Query: YFNNIVKRLRQTNMVVFNNYYLHSKRLR 28

Note that the symbol mapping TransProt11 is inherited from Proteinseq, when comparing
the translated codons of the six reading frames of Codonseq.fna with the protein sequence.
Also note that the fourth column of the position line shows the symbol F. This means that the
right match instance (in the query sequence) refers to one of the three reading frames on the
forward strand. In case the right match instance refers to the one of the three reading frames on
the reverse strand, the symbol G would be shown.

9.9.4 Matching a DNA sequence on the Protein Level

To match a DNA sequence on the Protein level, we construct a six frame translation index, using
the program mkdna6idx. We do this for the file Codonseq.fna of the previous section.

$ mkdna6idx -db Codonseq.fna -indexname Codonseq -tis -ois -v
reading file "Codonseq.fna"
total length of sequences: 102
create file "Codonseq.tis"
create file "Codonseq.ois"
create file "Codonseq.des"

9 VMATCH 54

create file "Codonseq.sds"
create file "Codonseq.prj"
create file "Codonseq.al1"
maximal value for argument of option -pl is 1, recommended value is 1
total length of sequences: 205 (including 5 separators)
alphabet "LVIFKREDAGSTNQYWPHMCXUBZ*-" (size 26) mapped to "LVIFKREDAGSTNQYWPHMCX" (size 21)
create file "Codonseq.6fr.tis"
create file "Codonseq.6fr.ois"
create file "Codonseq.6fr.des"
create file "Codonseq.6fr.sds"
create file "Codonseq.6fr.lcp"
initializing data structures
sorting suffixes according to prefix of length 1
sorting all buckets
create file "Codonseq.6fr.llv"
create file "Codonseq.6fr.suf"
create file "Codonseq.6fr.bwt"
create file "Codonseq.6fr.prj"
create file "Codonseq.6fr.al1"
overall space peak: main=0.13 MB, secondary=0.00 MB

The generated index has a name ending with suffix .6fr. The additional plain text index named
Codonseq is used for transforming and showing the matches. We want to compute exact matches
of length at least 12 on the protein level:

$ vmatch -l 12 -s Codonseq.6fr
args=-l 12 -s Codonseq.6fr
12 0 20 F 12 0 71 0 1.15e-12 24 100.00
Sbjct: ACAAACAAACAT 32

!
Sbjct: ACGAACAAACAT 83

12 0 70 I 12 0 19 0 1.15e-12 24 100.00
Sbjct: TGTTTGTTCGTA 82

! !
Sbjct: TGTTTGTTTGTC 31

As usual, the symbol ! shows alignment columns with mismatches. However, the mismatching
bases still allow a match on the corresponding translated codon. Note that the fourth column of
the position line shows the symbols F and I. These symbols describe if the match instances are
on the three reading frames of the forward strand or of the three reading frames on the reverse
strand. Since all combinations are possible, there are two additional symbols G and H besides F
and I. The following table shows which symbol stands for which combination:

symbol left match instance right match instance
F forward strand reading frame forward strand reading frame
G forward strand reading frame reverse strand reading frame
H reverse strand reading frame forward strand reading frame
I reverse strand reading frame reverse strand reading frame

9 VMATCH 55

9.9.5 Computing Regions not containing a Match

There are applications, where it is not important to know where the matches are. Instead, one is
interested in knowing those regions of the database sequences or of the query sequences where
no match occurs. For these kinds of applications vmatch provides the options -dbnomatch and
-qnomatch. Consider, for example, a comparison of the index against itself. The corresponding
matches can be called repeats, since they occur more than once in the same sequence, or sets of
sequences. Those parts of the sequence not covered by a repeat can then be considered unique
substrings. To compute these, we can use the option -dbnomatch which requires an additional
argument specifying the least length of the unique substrings to be reported. For example, the
following program call reports all substrings of length at least 700 which do not contain a direct
repeat of length 25 with at most 1 difference:

$ vmatch -dbnomatch 700 -l 25 -e 1 atEST
args=-dbnomatch 700 -l 25 -e 1 atEST
>10 0 815
>26 0 1019
>32 0 1039
>77 191 742
>304 0 725

Each line beginning with the symbol > reports the sequence number, the relative start position,
and the length of a unique substring (i.e. a substring not covered by a repeat instance) in the
sequence under consideration. As usual, the output format can be modified by the options -f,
-showdesc, -absolute, and -s. For example, if we additionally use the option -s, then also the
sequence content of the unique substrings is reported. This gives an output file in FASTA-format.
Additionally, the >-line shows the character distribution of the sequence reported.

The option -qnomatch can be used when comparing a set of query sequences against the database
sequences. For example, the following program call reports all regions of length 10000 in the
genome of Ecoli K12 which do not contain any exact match to a substring of length 18 or longer
in the Ecoli O157:H7 genome.

$ vmatch -qnomatch 10000 -q EcoliK12 -l 18 EcoliO157H7
args=-qnomatch 10000 -q EcoliK12 -l 18 EcoliO157H7
>0 1385319 10800
>0 1398241 10711
>0 1570168 20414
>0 1599821 12375
>0 2755646 11820

Each line beginning with the symbol > reports the starting position and the length of a substring
in the query sequences which is not common to both genomes under consideration. If we addi-
tionally use the option -s, then also the sequences in the query which are not common with the
database sequences are reported.

9 VMATCH 56

Alternatively, we can output the substrings in the Ecoli O157:H7 genome not occurring in
Ecoli K12. These could be good candidates to explain the pathogenicity of Ecoli O157:H7.

$ vmatch -dbnomatch 10000 -q EcoliK12 -l 18 EcoliO157H7
args=-dbnomatch 10000 -q EcoliK12 -l 18 EcoliO157H7
>0 664171 11617
>0 1087635 12158
>0 1105699 10152
>0 1117238 14153
>0 1278595 13158
>0 1434907 13857
>0 1483242 12158
>0 1501306 10152
>0 1512845 14152
>0 1652802 11515
>0 1718335 11241
>0 1956644 11322
>0 2030357 12870
>0 2111045 12614
>0 2934852 12334
>0 3206647 12308
>0 3729821 15836
>0 4603137 15160
>0 4618316 13631
>0 5319491 10210
>0 5339473 11560

9.9.6 Masking Matches

The options -dbmaskmatch and -qmaskmatch are very similar to the nomatch-options used in the
previous section. While the nomatch-options output those parts of the sequences not covered by
a match, the maskmatch-options allows to mask the matches in the database sequences or in the
query sequences. For example, the following program call masks the left instance of substring
matches of length ≥ 20 when comparing the index swissp.sp.gz against itself. X is used as a
masking character.

$ vmatch -l 20 -s 90 -dbmaskmatch X swissp.sp.gz
>110K_PLAKN 110 KD ANTIGEN (PK110) (FRAGMENT).
FNSNMLRGSVCEEDVSLMTSIDNMIEEIDFYEKEIYKGSHSGGVIKGMDYDLEDDENDEDEMTEQMVEEVADHITQDMIDEVAHHVLDNI
THDMAHMEEIVHGLSGDVTQIKEIVQKVNVAVEKVKHIVETEETQKTVEPEQIEETQNXXXXXXXXXXXXXXXXXXXXXXXXXXXXXQIE
ETQKTVEPEQTEEAXX
XXXXXXXXXXXXXXXPTQETQNTVEP

Of course, the masking options can also be used when matching a query against an index. Then
there are two choices. One can either mask the database sequences or the query sequences. For
example, the following application masks both instances of the substring matches of length 70 or
longer between Ecoli O157:H7 and Ecoli K12. That is, the matches in the database sequence rep-
resented by the index EcoliO157H7 are masked by converting the original lower case characters
to upper case characters.

9 VMATCH 57

$ vmatch -l 70 -q EcoliK12 -s 70 -dbmaskmatch tolower EcoliO157H7
>Ecoli O157:H7 Complete Genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTCTCTGACagcagc
ttctgaactggttacctgccgtgagtaaattaaaattttattgacttaggtcactaaatactttaaccaa
tataggcatagcgcacagacagataaaaattacagagtacacaacatccatgaaacgcattagcaccacc
attaccaccaccatcaccaCCACCATCACCATTaccattaccacaggtaacggtgcgggctgacgcgtac
aggaaacacagaaaaaagcccgcacctgacagtgcgggcttttttttcgaccaaaggtaacgaggtaaca
accatgcgagtgttgaagttcggcggtacatcagtggcaaatgcagaacgttttctgcgGgttgccgata
ttctggaaagcaatgccaggcaggggcaggtggccaccgtcctctctgcccccgccaaaatcaccaacca
cctggtggcgatgattgaaaaaaccattagcggccaggatgctttacccaatatcagcgatgccgaacgt
atttttgccgaacttCTGACGGGACTCGCCGCCGCCCAGCCGGGATTCCCGCTGGCGCAATTGAAAACTT

It is easily visible that there are several matches in the first few hundred bases of EcoliO157H7.

To mask the substrings of the query sequence Ecoli K12 covered by a match, we replace op-
tion -dbmaskmatch by -qmaskmatch. We also use the flag tolower, since the query sequence
consists of upper case characters.

$ vmatch -l 70 -q EcoliK12 -s 70 -qmaskmatch tolower EcoliO157H7
>gb|U00096|U00096 Escherichia coli K-12 MG1655 complete genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATagcagc
ttctgaactggttacctgccgtgagtaaattaaaattttattgacttaggtcactaaatactttaaccaa
tataggcatagcgcacagacagataaaaattacagagtacacaacatccatgaaacgcattagcaccacc
attaccaccaccatcaccattaccacaggtaacggtgcgggctgacgcgtacaggaaacacagaaaaaag
cccgcacctgacagtgcgggctttttttttcgaccaaaggtaacgaggtaacaaccatgcgagtgttgaa
gttcggcggtacatcagtggcaaatgcagaacgttttctgcgTgttgccgatattctggaaagcaatgcc
aggcaggggcaggtggccaccgtcctctctgcccccgccaaaatcaccaaccacctggtggcgatgattg
aaaaaaccattagcggccaggatgctttacccaatatcagcgatgccgaacgtatttttgccgaacttTT
GACGGGACTCGCCGCCGCCCAGCCGGGGTTCCCGCTGGCGCAATTGAAAACTTTCGTCGATCAGGAATTT

9.9.7 Clustering Indexed Sequences

Clustering a set of sequences according to matches occurring in the sequences is an important
task. It is done, for example, when clustering ESTs or protein sequences. The following com-
mand computes clusters of all database sequences in atEST, based on all matches of length at
least 200 with at most 10 differences. The matches must cover at least 30% of the smaller of the
two matching sequences and 50% of the larger of the two sequences.

$ vmatch -dbcluster 30 50 -p -d -l 200 -e 10 atEST
args=-dbcluster 30 50 -p -d -l 200 -e 10 atEST
152 clusters
389 elements out of 1952 (19.93%) are in clusters
1563 elements out of 1952 (80.07%) are singlets
124 clusters of size 2
18 clusters of size 3
4 clusters of size 4
2 clusters of size 5
1 cluster of size 6

9 VMATCH 58

1 cluster of size 7
1 cluster of size 8
1 cluster of size 40
0: 1646 1862
1: 3 39 6
2: 1764 1896 1745 1767 1882

We only show the first 3 clusters of size at least two. For example, cluster 2 contains the se-
quences with numbers 1764, 1896, 1745, 1767, 1882.

Instead of the sequence numbers, we can output the descriptions, using the option -showdesc 0.

$ vmatch -dbcluster 30 50 -p -d -l 200 -e 10 -showdesc 0 atEST
args=-dbcluster 30 50 -p -d -l 200 -e 10 -showdesc 0 atEST
152 clusters
389 elements out of 1952 (19.93%) are in clusters
1563 elements out of 1952 (80.07%) are singlets
124 clusters of size 2
18 clusters of size 3
4 clusters of size 4
2 clusters of size 5
1 cluster of size 6
1 cluster of size 7
1 cluster of size 8
1 cluster of size 40
0:

gi|2764304|gb|R65326.1|R65326
gi|2764088|gb|R30410.1|R30410

1:
gi|4714047|dbj|C99930.1|C99930
gi|4714011|dbj|C99887.1|C99887
gi|4714044|dbj|C99927.1|C99927

2:
gi|2764186|gb|R64887.1|R64887
gi|2764054|gb|R30268.1|R30268

To output more information about the clustered sequences we supply the option -dbcluster

with a third argument CLatEST and add the option -s.

$ vmatch -dbcluster 30 50 CLatEST -s -p -d -l 200 -e 10 atEST
args=-dbcluster 30 50 CLatEST -s -p -d -l 200 -e 10 atEST
152 clusters
389 elements out of 1952 (19.93%) are in clusters
1563 elements out of 1952 (80.07%) are singlets
124 clusters of size 2
18 clusters of size 3
4 clusters of size 4
2 clusters of size 5
1 cluster of size 6

9 VMATCH 59

1 cluster of size 7
1 cluster of size 8
1 cluster of size 40

This generates files CLatEST.s.i.match and CLatEST.s.i.fna containing the matches and
the clustered sequences for cluster i. s is the number of sequences in the cluster. For example,

$ cat CLatEST.5.2.match
228 1882 70 D 229 1896 73 8 4.36e-106
218 1767 90 D 219 1896 83 7 1.85e-102
218 1745 90 D 219 1896 83 7 1.85e-102
336 1764 74 D 336 1882 63 7 1.39e-171
330 1764 74 D 334 1767 73 10 2.86e-163
310 1745 73 D 308 1764 74 9 1.92e-151

...

shows the matches responsible for the cluster 2 of size 5. Furthermore,

$ cat CLatEST.5.2.fna
>gi|2764186|gb|R64887.1|R64887 13391 Lambda-PRL2 Arabidopsis thaliana cDNA
ACAAGAACTCAAACACTTCATAACTAAAACATCCTTTAANGCCTTTNNAAAAACTCAATC
ATGTCAAGCAACTNCGGAAGCTGCGACTGTCCTGACAAGACCCAGTGCGTAAAGAAGGGA
ACCAGCTACACCTTCGACATCGTCGAGACTCAGGAGAGCTACAAGGAGGCCATGATCATG
GACGTTGGTGCCGAGGAGAACAACGCAAATTGCAAGTNCAAGTNCGGCTCCTCTTGCAGC
TGCGTCAACTGCACTTGCTGCCCCAACTAATGANGCTTCTTTAATCAAAATGTAATATGA
ATAAAAGTTGATGTGGGCTCATCTATTGAGCTCATGTNTCTNTTATTACTACTCTCTAGT
ATGGTGTGATGTAATGGGTTATGACCCTTCTTTCCCTTCCCTATAAAACTNAAGGANCTT
GCAAGGTT
>gi|2764054|gb|R30268.1|R30268 12873 Lambda-PRL2 Arabidopsis thaliana cDNA
CTCAAACACTTCATAACTAAACATCCTTTAAAGCCTTTTCAAAAACTCAATCATGTCAAG
CAACTGCGGAAGCTGCGACTGTCCTGACAAGACCCAGTGCGTAAAGAAGGGAACCAGCTA
CACCTTCGACATCGTCGAGACTCAGGAGAGCTACAAGGAGGCCATGATCATGGACGTTGG
TGCCGAGGAGAACAACGCAAATTGCAAGTNCAAGTNCGGCTCCTCTTGCAGCTGCGTNAA
CTGCACTTGCTGCCCCCAACTAATGANGCTTCTTTAATCAAAATGTAATATGNNTAAAAG
TTTNATGTNGGGGCTCATCCTATTTGAGNCTCATGGTTTCTCTTTATTACTACCNCTCTN
GTAATGGGGGTGATGTAATGGGGTTNTTACCCCNTCTTCCCNTNCCCNTTAAAAACT
...

shows the sequences of this cluster.

9.9.8 Computing a non-redundant set of sequences

A colleague recently sent a list of 8124 sequences for different virus strains of the Mouth and
Foot Disease. The goal was to produce a multiple alignment of the sequences. Given the GI-
numbers of the sequences, it was easy to download the sequences from Genbank resulting in
126 files. The lengths of the sequences is in the range between 7733 and 8280. The total length
of all 8124 sequences was . A simple call to mkvtree with all 126 files given as arguments
to option -db, creates an index for all sequences. The name of the index is mfdindex. Since
the construction of the index mfdindex takes longer than expected, there seemed to be long
common substrings in the sequences. This can easily be verified by clustering the matches:

vmatch -l 7000 -seedlength 1000 -exdrop 2 -dbcluster 100 100 mfdindex

9 VMATCH 60

This means that the sequences are clustered based on matches of length 7000 or longer with
seeds of length 1000 or longer, allowing an Xdrop threshold of 2. The parameters 100 100 to
option -dbcluster specify that two sequences are clustered only if a match covers the sequence
completely. That is, the sequences in each cluster are pairwise identical.

We obtain 110 clusters and 1 one singlet. That is 8213 sequences are in cluster of size at least
two, and one sequence is singleton. So to compute an optimal alignment, it makes sense to only
continue with the singlet and exactly one sequence from each cluster. These 111 sequences can
be extracted by adding the option -nonredundant to the previous call of vmatch. The argument
of this option is the name of the file to store the nonredundant sequences:

vmatch -l 7000 -seedlength 1000 -exdrop 2 -dbcluster 100 100 -v -nonredundant nrset mfdindex

Having computed the non-redundant set, we can, for example, continue with computing a multi-
ple alignment using the software MGA [5].

9.9.9 Chaining Matches

We only give two examples of using the option -pp chain. We compare the E.coli genomes
Ecoli K12 and Ecoli O157:H7 and compute all 659 matches of length 500 or longer between
these sequences. The first example shows how to compute a global chain. The optimal global
chain contains 597 matches (i.e. 91% of all matches), of which we only show the first and the
last seven.

$ vmatch -l 500 -q EcoliK12 -pp chain global EcoliO157H7
args=-l 500 -q EcoliK12 -pp chain global EcoliO157H7
chain 0: length 596 score 835932

512 0 13736 D 512 0 13719 0 0.00e+00 1024 100.00
645 0 59313 D 645 0 54337 0 0.00e+00 1290 100.00
1501 0 59959 D 1501 0 54983 0 0.00e+00 3002 100.00
895 0 61917 D 895 0 56941 0 0.00e+00 1790 100.00
515 0 65876 D 515 0 60943 0 0.00e+00 1030 100.00
502 0 67856 D 502 0 62923 0 0.00e+00 1004 100.00
671 0 5448270 D 671 0 4615599 0 0.00e+00 1342 100.00
915 0 5449694 D 915 0 4617023 0 0.00e+00 1830 100.00
577 0 5450982 D 577 0 4618311 0 0.00e+00 1154 100.00
597 0 5455239 D 597 0 4623611 0 0.00e+00 1194 100.00
553 0 5457015 D 553 0 4625387 0 0.00e+00 1106 100.00
871 0 5457972 D 871 0 4626344 0 0.00e+00 1742 100.00
828 0 5469153 D 828 0 4637525 0 0.00e+00 1656 100.00

To find spots of high local similarity, we instead perform local chaining. We compute the local
chains with the best and the second best scores: We obtain two chains. The highest scoring chain
has score 23118 and is of length 10. The second highest scoring chain has score 12654 and is of
length 7:

9 VMATCH 61

$ vmatch -l 500 -q EcoliK12 -pp chain local 2b EcoliO157H7
args=-l 500 -q EcoliK12 -pp chain local 2b EcoliO157H7
chain 0: length 7 score 12654

749 0 193444 D 749 0 189957 0 0.00e+00 1498 100.00
592 0 194194 D 592 0 190707 0 0.00e+00 1184 100.00
1210 0 194787 D 1210 0 191300 0 0.00e+00 2420 100.00
1065 0 196408 D 1065 0 193063 0 0.00e+00 2130 100.00
505 0 197510 D 505 0 194165 0 0.00e+00 1010 100.00
2632 0 198385 D 2632 0 195040 0 0.00e+00 5264 100.00
589 0 201135 D 589 0 197790 0 0.00e+00 1178 100.00

chain 1: length 10 score 23118
2153 0 4184202 D 2153 0 3437201 0 0.00e+00 4306 100.00
1845 0 4186356 D 1845 0 3439355 0 0.00e+00 3690 100.00
575 0 4188373 D 575 0 3441372 0 0.00e+00 1150 100.00
537 0 4188949 D 537 0 3441948 0 0.00e+00 1074 100.00
2567 0 4189568 D 2567 0 3442567 0 0.00e+00 5134 100.00
798 0 4192136 D 798 0 3445135 0 0.00e+00 1596 100.00
833 0 4192935 D 833 0 3445934 0 0.00e+00 1666 100.00
952 0 4194011 D 952 0 3447010 0 0.00e+00 1904 100.00
1552 0 4195622 D 1552 0 3448621 0 0.00e+00 3104 100.00
917 0 4197175 D 917 0 3450174 0 0.00e+00 1834 100.00

For examples showing the effect of the different chaining options, see the corresponding manual
for the program chain2dim.

9.9.10 Clustering Matches

Suppose we have constructed an index for yeast chromosome III:

$ mkvtree -dna -db ychrIII.fna -v -tis -ois -bwt -suf -lcp
reading file "ychrIII.fna"
total length of sequences: 315339
create file "ychrIII.fna.tis"
create file "ychrIII.fna.ois"
create file "ychrIII.fna.des"
create file "ychrIII.fna.sds"
create file "ychrIII.fna.lcp"
initializing data structures
sorting suffixes
create file "ychrIII.fna.llv"
create file "ychrIII.fna.suf"
create file "ychrIII.fna.bwt"
create file "ychrIII.fna.prj"
create file "ychrIII.fna.al1"
overall space peak: main=2.82 MB (9.38 bytes/symbol), secondary=0.31 MB

Now compute all repeats of length ≥ 100 in yeast chromosome III, and cluster these matches by
similarity, using an error rate of 35. The cluster files produced have the prefix clout:

9 VMATCH 62

$ vmatch -l 100 -pp matchcluster erate 35 outprefix clout ychrIII.fna
args=-l 100 -pp matchcluster erate 35 outprefix clout ychrIII.fna
cluster 16 matches
create cluster 0 of size 2
create cluster 1 of size 3
create cluster 2 of size 2

Three files where generated by this program call:

$ ls -l clout.*
-rw-r----- 1 kurtz gistaff 285 2005-02-21 16:41 clout.2.0.match
-rw-r----- 1 kurtz gistaff 289 2005-02-21 16:41 clout.2.2.match
-rw-r----- 1 kurtz gistaff 491 2005-02-21 16:41 clout.3.1.match

Consider the last file clout.3.1.match representing cluster 1 with three matches:

$ cat clout.3.1.match
args=-l 100 ychrIII.fna
id 7

280 0 83954 D 280 0 84469 0 7.41e-159 560 100.00
id 8

239 0 83954 D 239 0 90099 0 3.58e-134 478 100.00
id 12

286 0 84422 D 286 0 90052 0 1.81e-162 572 100.00
linked 8 and 12 with edit distance 47 (error rate 19.67%)
linked 7 and 12 with edit distance 88 (error rate 31.43%)
linked 7 and 8 with edit distance 41 (error rate 17.15%)

Cluster 1 thus contains the matches with identification numbers 7, 8, and 12. For example, match
7 and 12 achieve a distance of 88, which corresponds to an error rate of 31.43%, well below the
maximum error rate of 35%. Note that the generated files are in a format that they can be read
by vmatchselect.

Instead of clustering by similarity, we can cluster by gap size, allowing gaps of size up to 1000.

$ vmatch -l 100 -pp matchcluster gapsize 1000 outprefix clout ychrIII.fna
args=-l 100 -pp matchcluster gapsize 1000 outprefix clout ychrIII.fna
cluster 16 matches
create cluster 0 of size 9
create cluster 1 of size 4

Consider the file clout.4.1.match representing cluster 1 with four matches: It contains the
matches with identification numbers 14, 7, 8, and 12. For example, match 8 and 7 have a gap of
276 = 84469−83954−239 which is well below the maximum gap size of 1000.

9 VMATCH 63

$ cat clout.4.1.match
args=-l 100 ychrIII.fna
id 14

126 0 83680 D 126 0 84422 0 3.86e-66 252 100.00
id 7

280 0 83954 D 280 0 84469 0 7.41e-159 560 100.00
id 8

239 0 83954 D 239 0 90099 0 3.58e-134 478 100.00
id 12

286 0 84422 D 286 0 90052 0 1.81e-162 572 100.00
linked 8 and 7 with gapsize 276
linked 8 and 14 with gapsize 229
linked 8 and 12 with gapsize 229
linked 14 and 7 with gapsize 663
linked 14 and 12 with gapsize 616
linked 14 and 8 with gapsize 148
linked 14 and 7 with gapsize 148

In a third run we cluster the matches by overlap, allowing overlaps of minimum 10%.

$ vmatch -l 100 -pp matchcluster overlap 10 outprefix clout ychrIII.fna
args=-l 100 -pp matchcluster overlap 10 outprefix clout ychrIII.fna
cluster 16 matches
create cluster 0 of size 3
create cluster 1 of size 5
create cluster 2 of size 3

Consider the file clout.3.2.match representing cluster 2 with three matches: It contains
the matches with identification numbers 0, 6, and 1. For example, match 0 and 6, overlap by
82 = 199591+203−199712 positions, which is 40.39% of the length 203 of the longer match.

$ cat clout.3.2.match
args=-l 100 ychrIII.fna
id 0

203 0 199591 D 203 0 293111 0 1.69e-112 406 100.00
id 6

195 0 13811 D 195 0 199712 0 1.11e-107 390 100.00
id 1

120 0 13690 D 120 0 293111 0 1.58e-62 240 100.00
linked 0 and 1 with overlap percentage 100.00
linked 0 and 6 with overlap percentage 40.39

9.9.11 Selection Functions

The concept of selection functions (bundles) is extensively explained in Appendix E. The follow-
ing function bundle (only consisting of the function selectmatch), defined in a file sel392.c,
accepts matches of length at most 392.

9 VMATCH 64

#include <string.h>
#include "select.h"

int selectmatch(Alphabet *alpha,
Multiseq *virtualmultiseq,
Multiseq *querymultiseq,
StoreMatch *storematch)

{
if(storematch->Storelength1 <= 392)
{

return 1; /* accept */
} else
{

return 0; /* reject */
}

}

To compile the appropriate shared object file under Linux or a Compaq-Alpha/True64 system,
we use the gcc compiler with the following options:

$ gcc -Wall -Werror -O3 -shared sel392.c -o sel392.so

On a SUN-Sparc/Solaris computer, the option -shared is replaced by the option -G. Note that in
case you are using the 64-bit version of the program you have to add the compiler option -m64.
For statically linked executables of vmatch and vmatchselect selection functions only work
under very restrictive circumstances: The machine which runs vmatch or vmatchselect
must have the same versions of the libraries as the machine on which the statically linked binaries
were compiled.

Now we can select the matches using the shared object sel392.so. This rejects the two
matches of length 517 and 402, see Section 9.9.1, above.

$ vmatch -l 350 -selfun sel392.so atEST
388 79 236 D 388 1495 180 0 4.22e-223 776 100.00
392 229 0 D 392 270 0 0 1.65e-225 784 100.00
369 736 141 D 369 1151 85 0 1.16e-211 738 100.00
369 902 54 D 369 1151 87 0 1.16e-211 738 100.00
367 736 143 D 367 902 54 0 1.86e-210 734 100.00

In the usual case you want to call the program vmatch or vmatchselect in any directory.
If you are using option -selfun, you have to specify the path to the directory where the shared
object can be found. This is done by defining the environment variable LD_LIBRARY_PATH.
For the csh or the tcsh you can, for example, define it as follows:

$ setenv LD_LIBRARY_PATH ".":"/usr/vstree/SELECT"

The corresponding definition for the bash or the sh is

$ LD_LIBRARY_PATH=".":"/usr/vstree/SELECT"
$ export LD_LIBRARY_PATH

10 VMATCHSELECT 65

This means that the shared objects are found in the current directory or in the directory

/usr/vstree/SELECT

The above example is a very simple selection function. The distribution of the programs de-
scribed in this manual comes with a subdirectory SELECT containing more well-documented
selection functions for diverse tasks.

10 vmatchselect: Sorting and Selecting Matches

vmatchselect allows to select interesting matches from the output of vmatch as specified
by user-defined criteria. It delivers matches of chosen length, degeneracy or significance into
further analysis routines. vmatchselect removes from the input all those matches that are
contained in another match. To do this efficiently, the matches are sorted by the position in
the database sequence, and hence in the order in which the matches are output, unless the user
specifies otherwise. Moreover, the sequences of the virtual suffix tree for which the match file
was produced can be clustered according to the matches. The input for vmatchselect is a
file produced by vmatch, called a match file.

vmatchselect is called as follows:

vmatchselect [options] matchfile

The output of vmatchselect goes to standard output and is sorted in ascending order of the
positions of the left instance of a matches. Two matches where the left instance occurs at the
same position, are sorted in descending order of their length. Two matches of the same length
where the left instance occurs in the same position, are sorted in ascending order of the position
of the right instance of the match.

vmatchselect provides a subset of the options of vmatch, namely the following options:

-l -leastscore -evalue -identity -showdesc

-best -sort -selfun -s -absolute

-f -nodist -noevalue -noscore -noidentity

-dbcluster -nonredundant -v -help

The main difference to vmatch is that vmatchselect gets the matches from a match file,
while vmatch computes the matches from scratch. Therefore options specifying the index
and/or the query sequences to be matched, as well as options specifying how to match are not
available in vmatchselect. The options of vmatchselect have the same meaning as in
the program vmatch. Thus, for a description, see above.

Note that vmatchselect also allows to use the option -dbcluster. If vmatchselect is
called with this option, then parses the given match file and performs single linkage clustering

11 RECENT CHANGES 66

based on the matches in this file. Thus vmatch and vmatchselect allow hierarchical clus-
tering. In a first step an initial set of matches with loose matching criteria is computed, using
vmatch. Then one clusters these matches by calling vmatchselect. In a second round one
applies more strict choices for the matches by the using the options -l, -leastscore, -evalue,
or -identity, etc. This allows stepwise refinement of clusters without much computational ef-
fort and no new index construction for the sequence of a cluster. The output of vmatchselect
is the same as the output of vmatch.

11 Recent Changes

The following new features have recently been integrated into the software described in this
manual.

2003-May-08; mkvtree: Option -pl can now be used without an argument. In this case, the
value for prefixlength is determined automatically. If option -pl is used with an argument, then
the behavior is as before. See page 9 for more details.

2003-May-15; vsubseqselect: The previous restriction on the maximum size of the sub-
string to be selected was removed. Otherwise, the behavior of the program did not change. See
page 22 for more details.

2003-May-17; vmatch, vmatchselect: Option -iub was removed. The effect of this
option can be achieved by the argument abbreviub of option -s. See page 38 for more details.

2003-May-18; vmatch: The default speedup-parameter for matching a query against an index
is now 2. That is, the option -qspeedup 2 is implicitly set. As a consequence, table stitab1 is
required for the matching, i.e. it has to be created. However, by using -qspeedup 0, the matching
works as before with additional tables, but probably not as efficient as with option -qspeedup 2.
See page 33 for more details.

2003-May-31; mkvtree: mkvtree now scans the input files in GENBANK, EMBL or SWIS-
SPROT format in such a way that additionally the LOCUS-information (in case of GENBANK) and
the ID-information (in case of EMBL and SWISSPROT) is extracted and later reported as part of
the description of the scanned sequence. See page 5 for more details.

2003-May-31; mkvtree: mkvtree can now read gzipped database files. These are inter-
nally unzipped and then processed as any other input files. See page 6 for more details.

11 RECENT CHANGES 67

2003-May-31; vmatch: vmatch can now read gzipped query files. These are internally
unzipped and then processed as any other input files. See page 6 for more details.

2003-Jun-4; vseqselect: vseqselect now gives an error message when the chosen
minimum length is larger than the chosen maximum length. See page 20 for more details.

2003-Jun-4; vmatch, vmatchselect: The argument e to option -evalue is now restricted
to either be 0.0 or ≥ 1.0 ·10−300. See page 36 for more details.

2003-Jun-15; vmatch, vmatchselect: The optional flags

keepleft, keepright, and keepleftifsamesequence

of option -dbnomatch have now been complemented by the flag keeprightifsamesequence.
All four flags can now also be used for the option -dbmaskmatch. See page 29 for more details.

2003-Jun-28; vmatch, vmatchselect: The option -best has now been implemented with
more efficient data structures. This gives a speedup if many matches are sought in order of their
quality. See page 37 for more details.

2003-Jul-1; vsubseqselect: If option -range or option -seq is used, then the output
shows the sequence description of the sequence, the substring was selected from. See page
22 for more details.

2003-Jul-2; vmatch, vmatchselect: Many new combinations of options are now possi-
ble. As a consequence, Table 6, contains considerably less entries of forbidden option combina-
tions.

2003-Jul-12; vmatch, vmatchselect: Option -selfun can now have an arbitrary number
of arguments, the first being the shared object containing the selection function bundle. All other
arguments (not beginning with the symbol -) are ignored by vmatch and vmatchselect.
See page 33 for more details.

2003-Jul-28; vstree2tex: Separator symbols are shown appropriately as different symbols.
That is, the ith separator symbol is shown as number i. See page 18 for more details.

2003-Nov-13; all programs: Option -version added.

11 RECENT CHANGES 68

2004-Jun-18; vmatch, vmatchselect: Added new selection function bundle for reporting
matches in CGviz-format. See the file SELECT/cgvizout.c. The selection function bundle
was contributed by Katrin Wimmenauer. See page 81 for more details

2004-Jun-25; vmatch: When using the options -dbmaskmatch or -qmaskmatch, it is reported
how many characters are masked. Previously, this information was shown on stdout. Now it
is shown on stderr. See page 30 for more details.

2004-Aug-20; vmatch: Option -online now works properly in all possible combinations
with other options. We extensively verified that it produces the same result as when running
vmatch without this option. See page 33 for more details.

2004-Aug-21; vmatch: Many combinations of options that were not possible before now
work properly. This mainly concerns the options -i and -online. As a consequence there are
only 102 combinations of options in vmatch excluded (see Table 6), compared to 112 in the
previous program version (which had even less options).

2004-Sep-03; vmatch, vmatchselect: In the Sbjct- and Query-lines showing an align-
ment, a position shown on the right end is now displayed correctly. In particular, gaps are ignored
when counting the positions. This leads to smaller positions and makes the output more compat-
ible with other programs.

2004-Sep-18; vmatch, vmatchselect: Modified the interface to function selectmatch-
Header. Besides the parameter used for computing matches, the function also gets access to the
parameters used in the call of the program using option -selfun, see Section E. See page 79 for
more details.

2004-Sep-18; vmatch, vmatchselect: Added an extra function selectmatchFinal-

table to the selection function bundle. It allows to e.g. display matches stored in a user defined
table. See page 33 for more details.

2004-Sep-19; vmatch, vmatchselect: Added new selection function bundle for merging
overlapping matches. See the file SELECT/mergematches.c. See page 82 for more details

2004-Oct-8; vmatch, vmatchselect: Changed the signature for the following functions
of the selection function bundle: selectmatchInit, selectmatch, selectmatchWrap.
These function are now called with three arguments:

• alphabet of the sequences to be compared,

11 RECENT CHANGES 69

• the Multiseq-structure representing the sequences in the index.

• the Multiseq-structure representing the sequences of the query.

See page 79 for more details.

2004-Oct-21; vmatch: When searching for repeats, option -l can now optionally be supplied
with a second and third argument. Both arguments are integers specifying the minimum and
maximum gap size of the repeat instances. See page 34 for more details.

2004-Dec-5; mkvtree: Given the indexname, mkvtree now removes all existing files com-
prising the index, before it generates the first index. This prevents from mixing index files from
different runs of mkvtree. Furthermore, mkvtree now reports an error message, if an index
file to be generated already exists.

2004-Dec-20; mkvtree: All symbol mappings for protein sequences now contain an addi-
tional wildcard symbol -, in addition to *, to represent stop codons. This feature was suggested
by Volker Brendel.

2004-Dec-22; vmatch: The maximum number of errors allowed with option -h and -e has
been extended from 10 to 25. See page 35 for more details

2004-Dec-22; vmatch: Computing complete matches with errors is now much more conve-
nient: options -h and -e have been extended to also allow the percentage search mode and the
best search mode. In the percentage search mode the user only specifies the percentage of errors
relative to the length of the query to be searched. In the best search mode, the user specifies that
matches for a given query sequence are reported only for the minimum number of errors. See
page 35 for more details

2004-Dec-22; vmatch: Computing complete matches with errors is now also possible on the
index, without using option -online. For many combinations of error thresholds and query
lengths this leads to reduced running times at the cost of increased space requirement.

2004-Dec-29; vmatch: If the given index is for sequences over the protein alphabet and the
given query sequences are over the DNA alphabet, then one can use option -dnavsprot. This
translates the DNA query sequences in all six reading frames. The six reading frames are matched
against the protein database index, with all parameters allowed to control the kind of matches
computed. The length of the matches and their positions are reported with respect to the original
DNA sequence. An alignment for the matching substrings is shown on the protein level. See
page 28 for more details

11 RECENT CHANGES 70

2004-Dec-31; vmatch: The recognition of symbol mappings for the DNA and the Protein
alphabet has been improved. Now all symbol mappings in the subdirectory TRANS are correctly
recognized. That is, all files in the directory TRANS with names containing the keyword DNA are
recognized as DNA symbol mappings. All files in the directory TRANS with names containing
the keyword Prot are recognized as Protein-symbol mappings. Of course, the recognition does
not depend on the name of the symbol mapping files. See page 7 for more details

2005-Jan-18; vmatch: When using the options -dbmaskmatch or -qmaskmatch, it is reported
how many characters are masked. If the environment variable VMATCHCOMMENTTOSTDOUT is set
to the value on, then this information is shown on stdout. Otherwise it is shown on stderr.
See page 30 for more details.

2005-Feb-1; vmatch: Option -s now allows an optional argument xml. This produces XML-
output.

2005-Feb-21; vmatch: Recall that in the vmatch-output, the line beginning with the sym-
bol # args= shows the arguments of vmatch. The last argument of a vmatch-call is the
indexname. By default, the indexname is shown with its absolute path. If the environment vari-
able VMATCHRELATIVEINDEXPATH is set to the value on, then the path before the indexname is
omitted.

2005-Feb-25; vmatch: The option -s abbreviub now works correctly for all mismatching
characters which are not wildcards.

2005-Feb-25; vmatch: The option -mum now allows an optional flag cand to compute MUM-
candidates.

2005-Feb-28; vmatch: Fixed bug in the codon translation on the reverse strand.

2005-Feb-28; vmatch: Added program mkdna6idx to compute a six frame translation in-
dex. vmatch can now read such an index to perform a self comparison of the indexed DNA
database sequences on the protein level.

2005-Feb-28; vmatch: Added program chain2dim. This computes global and local optimal
chains. Added corresponding option -pp chain to directly compute chains in vmatch.

2005-Feb-28; vmatch: Added program matchcluster. This clusters matches. Added corre-
sponding option -pp matchcluster to directly compute compute clusters in vmatch.

11 RECENT CHANGES 71

2005-Mar-11; mkvtree, vmatch: Added perl script repfind.pl. This allows to emulate
the program repfind from the REPuter software package.

2005-Mar-15; vmatch: In former versions of the program, the maximum number of errors
allowed with option -h and -e was 10 and later 25. This fixed maximum error number is removed
now. That is you can choose any number of errors. See page 35 for more details

2005-Sep-13; vmatch: When combining option -hxdrop and -leastscore, vmatch did not
show a match with 0, no matter what score it had. This was a bug reported by Martin Frith, and
is now fixed.

2006-Apr-05; vmatchselect: When using vmatchselect with option -s applied to
matchfiles containing query matches, the program produced a segmentation fault. This bug is
now removed.

2006-Apr-12; mkvtree, vmatch: The sequences file parser previously tolerated sequences
containing no symbols. This caused problems in several cases. Now mkvtree and vmatch
produce an error message if empty sequences are detected. They exit with exit code 1.

2007-Jun-2; vmatch: Martin Frith pointed out that option -supermax delivers repeats which
are not always supermaximal. The problem is fixed now, i.e. the algorithm for computing super-
maximal repeats now works correctly.

2007-Jun-2; vmatch: Martin Frith pointed out that option -i combined with option -supermax

delivers incorrect results. This also holds if option -i is combined with option -mum and self
comparison is performed. This problems is fixed and vmatch now works correctly for these
options.

2007-Nov-2; vmatch: Volker Brendel pointed out that in some cases vmatch reports differ-
ent alignments for the same protein to genome comparison, depending on whether the protein
query is supplied singly or together with other targets. This problem is fixed now.

2008-Feb-16; vmatch: Anar Khan reported that Vmatch exits with an error message, when
reverse complemented repeats are computed and constraints on the distance of the matches are
specified. This problem is fixed now.

12 REFERENCES 72

2010-Apr-26; vmatch: option -nonredundant now delivers the longest sequence from the
corresponding cluster (instead of an unspecified representative). For every binary the distribution
now contains an additional statically linked binary with the same name in the directory static/
(except for Mac OS X).

Acknowledgements

Sven Rahmann, Kirstin Weber, Volker Brendel, Alexander Sczyrba, Jomuna Choudhuri, Gordon
Gremme, Marisano James, Martin Frith, Thomas Jahns, Peter Andrews, Wei Zhu, Anar Khan,
and Jeremy Leipzig gave valuable hints on improving the manual and the programs described
herein. Their help is much appreciated.

12 References

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its appli-
cations to genome analysis. In Proceedings of the Second Workshop on Algorithms in
Bioinformatics, pages 449–463. Lecture Notes in Computer Science 2452, Springer-Verlag,
2002.

[2] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix
arrays. Journal of Discrete Algorithms, 2:53–86, 2004.

[3] M.I. Abouelhoda and E. Ohlebusch. A Local Chaining Algorithm and its Applications in
Comparative Genomics. In Proc. 3rd Worksh. Algorithms in Bioinformatics (WABI 2003),
number 2812 in Lecture Notes in Bioinformatics, pages 1–16. Springer-Verlag, 2003.

[4] O. Delgado-Friederichs, T. Dezulian, and D.H. Huson. A meta-viewer for biomolecular
data. In R.K. Dittrich, W. König, A. Oberweis, K. Rannenberg, and W. Wahlster, edi-
tors, INFORMATIK 2003 – Band 1. GI Edition Lecture notes in Informatics, Vol. P-34.
Gesellschaft für Informatik, 2003.

[5] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment. Bioinformatics,
18(Suppl. 1):S312–S320, 2002.

[6] S. Kurtz. A Time and Space Efficient Algorithm for the Substring Matching Problem, 2002.

[7] S. Kurtz, J.V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R. Giegerich.
REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids
Res., 29(22):4633–4642, 2001.

73

[8] U. Manber and E.W. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

[9] G. Myers. A Fast Bit-Vector Algorithm for Approximate String Matching Based on Dy-
namic Programming. Journal of the ACM, 46:395–415, 1999.

[10] E. Ukkonen. Algorithms for Approximate String Matching. Information and Control,
64:100–118, 1985.

[11] N. Volfovsky, B.J. Haas, and S.L. Salzberg. A Clustering Method for Repeat Analysis in
DNA Sequences. Genome Biology, 2(8):research0027.1–0027.11, 2001.

[12] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A Greedy Algorithm for Aligning DNA
Sequences. J. Comp. Biol., 7(1/2):203–214, 2000.

A BASIC NOTIONS 74

A Basic Notions

Throughout this section we consider a sequence u of length m over some alphabet Σ. The symbols
are indexed from 0, i.e. u = u0u1 . . .um−1.

If Σ is the DNA alphabet {a,c,g, t}, then we define a function wcc : Σ→ Σ by the following
equations:

wcc(a) = t
wcc(g) = c
wcc(c) = g
wcc(t) = a

We extend wcc to any sequence u = u0u1 . . .um−1 over Σ by defining

wcc(u) = wcc(u0)wcc(u1) . . .wcc(um−1)

Consider two sequences u and v of equal length. The Hamming distance of u and v, denoted by
dH(u,v), is the number of positions where u and v differ, that is,

dH(u,v) = |{i ∈ [1, |u|] | ui 6= vi}|

There are three kinds of edit operations: deletions, insertions, and mismatches of single symbols.
The edit distance or Levenshtein distance of u and v, denoted by dE(u,v), is the minimum
number of edit operations needed to transform u into v.

Let ≈ be a binary relation on sequences, and assume that u and v are sequences of length m and
n. Let l,r > 0, i ∈ [0,m− l], and j ∈ [0,n− r]. We define two different kinds of matches between
u and v:

• (l, i,r, j) is a direct match if and only if

uiui+1 . . .ui+l−1 ≈ v jv j+1 . . .v j+r−1 (1)

If u = v, then we additionally assume i < j.

• (l, i,r, j) is a palindromic match if and only if

uiui+1 . . .ui+l−1 ≈ wcc(v j+r−1v j+r−2 . . .v j) (2)

If u = v, then we additionally assume i≤ j.

(l, i,r, j) is a match, if it either is a direct or a palindromic match. Each match (l, i,r, j) specifies
two sequences:

A BASIC NOTIONS 75

1. the sequence uiui+1 . . .ui+l−1 occurring on the left-hand side of (1) or (2). This is the left
instance of (l, i,r, j).

2. the sequence occurring on the right-hand side of (1) or (2). This is the right instance of
(l, i,r, j).

By specifying the relation ≈, we obtain different types of matches:

1. If ≈ is the identity on sequences, then a match (l, i,r, j) is an exact match.

2. Let k > 0. If for any sequences x,y the relation ≈ satisfies

x≈ y ⇐⇒ |u|= |v| and dH(x,y)≤ k

then a match (l, i,r, j) is a k-mismatch match.

3. Let k ∈ IN. If for any sequences x,y the relation ≈ satisfies

x≈ y ⇐⇒ dE(x,y)≤ k

then a match (l, i,r, j) is a k-differences match.

4. A match is degenerate if it is a k-mismatch or a k-differences match for some k ≥ 0.

To distinguish between the different types of matches, we assign to them a distance value ac-
cording to the following rules:

• An exact match has distance 0.

• A k-mismatch match with k > 0 mismatches has distance −k.

• A k-differences match with k > 0 differences has distance k.

A match (l, i,r, j) is contained in a match (l′, i′,r′, j′) if and only if i′ ≤ i≤ i+ l−1≤ i′+ l′−1
and j′ ≤ j ≤ j+ r−1≤ j′+ r′−1.

By requiring matches to be maximal we can reduce the number of interesting matches:

• An exact match is maximal if it is not contained in another exact match of the same kind.

• A k-mismatch match is maximal if it is not contained in another k-mismatch match of the
same kind.

• A k-differences match is maximal if it is not contained in another k-differences match of
the same kind.

A maximal unique match is a sequence w with the following properties:

B SPECIFICATION OF A SYMBOL MAPPING 76

• |w| ≥ l.

• w occurs exactly once in u and it occurs exactly once in v.

• For any character a neither wa nor aw occurs both in u and in v.

w is represented by its length and its start positions in u and in v.

Example: Let u = gattcttcgt, v = cctcgtgtcg, and l = 2. Then there are two maximal unique
matches ct and tcgt represented by (2,4,1) and (4,6,2).

When comparing a sequence against itself, we also call a match (l, i,r, j) a repeat, if i < j. In
other words, the two instances of a match do not occur at the same position. In this way, we do
not report the trivial repeat where both instances of the match is the sequence itself.

Consider a repeat. If the left and the right instance of the repeat directly follow each other
(without a gap or overlap), then the repeat is called tandem repeat. Suppose that the left instance
of the tandem repeat starts at position p and the repeat is of length l. Then the right instance
starts at position p+ l. Such a tandem repeat is branching if the characters at position p+ l and
p+2l are distinct.

A supermaximal repeat is a maximal repeat that never occurs as a substring of any other maximal
repeat.

B Specification of a symbol mapping

mkvtree can be applied to sequences over any set of printable ASCII symbols. So, in particular
it can be used for DNA, RNA, and for protein sequences. The user specifies in a symbol mapping
the symbols the alphabet consists of (including wildcards). By grouping the symbols on different
lines, the user also defines which symbols are considered to be identical, and how the symbols
should be output when reporting a match. The symbol mapping implicitly defines an alphabet
transformation ϕ , which is applied to the input file. mapsize is the number of lines in the symbol
mapping files. If a symbol mapping is given, then all symbols in the input files must occur in the
alphabet. Otherwise, the program exits with error code 1.

The format of the symbol mapping file is best explained by some examples. Consider the file
TransDNA containing the following lines:

aA
cC
gG
tTuU
nsywrkvbdhmNSYWRKVBDHM

These lines specify that the sequences in the input files are allowed to contain the symbols
a,c,g, t,u,n,s,y,w,r,k,v,b,d,h,m in either lower or upper case. Moreover, the first four lines

B SPECIFICATION OF A SYMBOL MAPPING 77

specify that, whenever characters are compared, the following equalities hold: a = A, c = C,
g = G, and t = T = u =U . The last line specifies the wildcard symbols, which are replaced by
unique symbols. As an effect, for each two (not necessary different) symbols α and β appearing
on the last line, we have α 6= β and α 6= a, α 6= A, . . ., α 6= u, α 6=U .

The internal symbol mapping ϕ is as follows: the symbols on the first line are mapped to 0, the
symbols of the second line to 1, etc. However, the symbols on the last line are mapped to the
constant WILDCARD, which is a non-printable ASCII character. When matching symbols, each
occurrence of WILDCARD is handled in such a way, that it does not match anywhere. Thus no
false exact matches containing a wildcard will be delivered. However, a degenerate match may
contain a WILDCARD, but this always leads to a pair of mismatching characters, or it must be
deleted or inserted.

When matches are reported, the sequence output (if any) usually consists of the first symbol of
each line, except if on that line there is a symbol following a white space. For example, if a match
contains the symbol A in the original input file, then this match is reported as a in the output of
vmatch. So if the user wants to output capital letters, he/she has to reverse the columns in the
symbol mapping file.

Here is another example (see file TRANS/TransProt11), where different groups of amino
acids are mapped to single symbols. We have also added comment lines. Each line at the be-
ginning of the file starting with the the symbol # is considered a comment line. It is ignored
when parsing the symbol mapping file. Any number of comment lines is allowed, but only at the
beginning of the file.

11-character alphabet as defined by Volker Brendel
LVIFJ i
KR +
ED -
AG s
ST o
NQ n
YW a
P p
H h
M m
C c
XUBZO*- x

This specifies the protein alphabet L,V, I,F,K,R,E,D,A,G,S,T,N,Q,Y,W,P,H,M,C. Some ex-
tra wildcard symbols X ,B,Z,∗,− are specified on the last line. All symbols occurring on the
same line to the left of the first white space (if any) are considered to be equivalent. In each
match, the symbol after the first white space will be shown for each symbol to its left. The
symbols on the last line are considered to be wildcards. Again they are replaced by the symbol
WILDCARD. The implicit mapping ϕ maps the symbol on line number i ∈ [0,mapsize− 1] to
integer i. In our case, L,V, I,F are mapped to 0, K,R are mapped to 1, etc.

C THE X-DROP EXTENSION STRATEGY 78

C The X-Drop Extension Strategy

Consider the problem of aligning initial portions of two sequences, say u and v of length m
and n, respectively. Alignments are scored such that each mismatch has score −1, an indel
(i.e. insertion or a deletion) has score −2, and each match has score 2. The goal is to find a
highest-scoring (i.e. optimal) alignment of some prefix of u and some prefix of v, which are
chosen to maximize the score. Here m is the length of u and n is the length of v. There is a
simple method to compute such an optimal alignment, but this method is inefficient, since it
requires O(mn) time. Zhang et. al. have proposed a method to prune the quadratic search space.
This method, called greedy algorithm in the sequel, does not guarantee that the highest scoring
alignment is found. However, in practice the alignments reported score very close to the optimal
alignment. The greedy algorithm requires to specify a positive integer X which influences the
size of the evaluated search space. The smaller X , the smaller the evaluated search space. The
greedy algorithm keeps track of the best alignment it has seen so far. Suppose this has score
T . Whenever it extends an alignment, it checks whether the score of the extended alignment is
smaller than T −X . If this is the case, than the extension is discarded. This effectively prunes
the search space. The width of the search space expands in regions where the aligned sequence
parts are different while it reduces in regions where the aligned sequences are similar. As a
consequence, the greedy algorithm terminates if a similar part is followed by a region of many
differences. The integer X determines how much differences are tolerated.

If you use the program vmatch with the option -exdrop, then the Xdrop-alignment strategy
is used when extending seeds (i.e. maximal exact matches) to the left and to the right. More
precisely, if a maximal exact match (l, i,r, j) of sequences u and v is found, then it is extended by
applying the greedy algorithm twice:

• It is applied to the reverse of the two sequences u0u1 . . .ui−1 and v0v1 . . .v j−1

• It is applied to the two sequences ui+lui+l+1 . . .um and v j+rv j+r+1 . . .vn

The two alignments reported by the greedy algorithm are concatenated with the seed to form
an alignment of the substrings ui′ . . .ui′′ and v j′ . . .v j′′ where i′ ≤ i, i+ l− 1 ≤ i′′, j′ ≤ j, and
j+ r−1≤ j′′.

D Substring Specifications

There are applications where one wants to restrict the matching process to a substring of the
query or to a substring of an database sequences. For example, if one already knows that the
matches occur in a certain region of the database or the query, and one wants to allow less
stringent matching conditions without spending time to search for matches in other regions. For
these applications, vmatch allows two kinds of substring specifications:

E SELECTION FUNCTION BUNDLES 79

• If only one query file with exactly one sequence, say s, is used as an argument to option
-q, then the query file may optionally be followed by an extra argument of the form (i, j).
i and j are integers in the range [0, |s|− 1] such that i < j or j = 0. If j = 0, then this is
interpreted as |s|−1. That is, let j′ = j if j > 0 and j′ = |s|−1, otherwise. The pair (i, j)
specifies that the matching is to be restricted to the query substring si . . .s j′ . Note that in
some Unix-shells the symbols (and) have special meaning. Hence it may be necessary
to quote the argument (i, j), so that the shell does not evaluate it. For example, single
quotes work for the csh, the tcsh, the sh, and the bash. The matches reported are as
before, with the exception of the E-value. This is reported with respect to the shorter query
substring, and thus becomes smaller. This feature does not work in connection with the
option -online.

• If the options -online and -q are used, then vmatch checks whether the descriptions of
the query sequences begin with >@ i j where i and j are numbers such that 0≤ i and i < j
or j = 0. If this is the case for all descriptions of the query sequences, then the index is
allowed to only contain one sequence, say t. If this is the case, then for each substring
specification >@ i j the matching is restricted to the substring ti . . . t j′ where j′ = j, if j > 0
and j′ = |t|−1, otherwise. The matches reported are as before, with the exception of the
E-value. This is reported with respect to the shorter database substring, and thus becomes
smaller. Note that the substring specifications are only taken into account if the option
-online is used.

E Selection Function Bundles

Although vmatch allows many different ways to postprocess matches or to modify the output,
the wide range of option combinations may not deliver what is required in a special application.
The standard approach, used for example for BLAST, works as follows: (1) output the matches to
a file, (2) parse this file with a user written program, and (3) postprocess the matches as required.
However, this approach has several disadvantages:

• The user has to write a program to parse the output of the search engine. Even if the output
format is designed s.t. it is easy to parse, this still requires extra effort.

• The size of the output can be huge for large scale matching problems. Due to slow I/O
processing, output and parsing the matches can often take more time than computing them.

• It is often not only the values reported in the output of a typical search that is relevant
for postprocessing, but also the set of sequences (with the sequence content and the cor-
responding sequence descriptions) subject to the matching task. Hence extra effort is re-
quired to parse the input sequences in such a way that the postprocessing program has
access to the sequence information.

E SELECTION FUNCTION BUNDLES 80

To circumvent these disadvantages, vmatch provides the concept of selection functions. These
allow flexible and fast on-the-fly postprocessing of the matches computed by vmatch, without
extra effort for output and parsing of the matches and sequence information.

Selection functions allow to access the matches and the sequences involved in the match imme-
diately after they are computed. The selection is applied before further postprocessing or output
is done, so that all other postprocessing options can be combined with selection functions.

Technically, a selection function is specified by a bundle of functions written in the programming
language C. The program code implementing the selection functions is compiled independently
from vmatch, but based on the data structures used in vmatch. Using the option -selfun,
vmatch calls the selection functions via shared library calls (sometimes also called dynamic
libraries). Since the definition of a selection function bundle requires a basic knowledge in C-
programming, this concept is probably not suited for the average user. Nevertheless, we describe
this concept carefully to give an idea of the flexibility it allows.

A selection function bundle consists of four functions with the following function headers:

Sint selectmatchHeader(int argc,
char **argv,
int callargc,
char **callargv)

Sint selectmatchInit(Alphabet *alpha,
Multiseq *virtualmultiseq,
Multiseq *querymultiseq)

Sint selectmatch(Alphabet *alpha,
Multiseq *virtualmultiseq,
Multiseq *querymultiseq,
StoreMatch *storematch)

ArrayStoreMatch *selectmatchFinaltable(Alphabet *alpha,
Multiseq *virtualmultiseq,
Multiseq *querymultiseq);

Sint selectmatchWrap(Alphabet *alpha,
Multiseq *virtualmultiseq,
Multiseq *querymultiseq)

Sint is a type synonym for signed integers. The C-structures Multiseq and StoreMatch are
defined in different header files. These are part of the distribution of the programs described in
this manual.

Now suppose that these functions are specified in an extra file, and that they are compiled in the
appropriate way (see below). Then the following holds:

• The function selectmatchHeader is called before the index and the query sequences
(if any) are read. The first argument of the function is the number of arguments of the

E SELECTION FUNCTION BUNDLES 81

corresponding call of vmatch and the second argument is the corresponding argument
vector storing pointers

argv[0], . . . ,argv[argc−1]

to the arguments of vmatch. In a call of vmatch, we have callargc=argc and
callargv=argv. In a call of vmatchselect, callargc is the number of argu-
ments of the program call to vmatchselect. callargv is the corresponding argument
vector.

• The function selectmatchInit is called after the index and the query files (if any)
are read and before the first match is processed. The indexed database sequences can be
accessed via the pointer virtualmultiseq, while the query sequence is accessed via
the pointer querymultiseq. The latter is NULL if the index is compared to itself. This
function can e.g. be used to initialize internal data structures defined by the user.

• The function selectmatch is applied to each match referenced by storematch.

– If selectmatch returns a value smaller than 0, then this is interpreted as an error,
and vmatch or vmatchselect exits with error code 1.

– If selectmatch returns 0, then this is interpreted as false and the match pointed to
by storematch is not selected. That is, it is discarded.

– If selectmatch returns 1, then this is interpreted as true and the match pointed
to by storematch is selected. That is, it is output or postprocessed by vmatch
according to the options given.

• The function selectmatchFinaltable is called after the last match has been processed,
but before selectmatchWrap is called. If specified by the user, it must return a pointer
to a memory area which is available after the call to this function. The memory area
stores an array of structures of type StoreMatch. See the selection function bundle in
mergematches.c for an example. vmatch or vmatchselect accesses the memory
area and processes it according to the options given by the user. In the standard case, the
merged matches are shown on standard out.

• The function selectmatchWrap is called after the last match has been processed. It can,
e.g., be used to output internal data structures which store accumulated information about
the matches found.

A selection function bundle must define at least the function selectmatch. The other func-
tions can be omitted in the C-file declaring the selection function bundle.

The distribution of the programs described in this manual comes with a subdirectory SELECT
containing well-documented selection functions for diverse tasks:

cgvizout.c Output matches in a format readable for the visualization program CGviz, see [4].

F THE TABLES COMPRISING THE INDEX 82

dbseqstat.c counts the number of matches to different query sequences and outputs all database
sequences containing at least two matches to different query sequences.

endmatch.c selects all matches which start with the first character of a database sequence or
which end with the last character of a database sequence.

lowcomplex.c discards all matches where the matching sequences are of low complexity, ac-
cording to a simple model based on the distribution of characters.

mstat.c groups matches according to their occurrence in the database sequences.

mergematches.c merge two matches if they overlap by a significant number of positions. This
number is specified as some percentage of the length of the matches.

rightmost.c selects the rightmost matches in all database sequences and discards those matches
which are not rightmost.

sel392.c selects matches which are not longer than some maximum value (see above). The latter
can be defined at run time by the user.

selsplicesite.c selects matches where the right instance of the match (in the query) does not have
AG to the right and TC to the left.

selstartend.c select matches where the left instance begins with the bases AC and ends with GT.

xmlout.c shows the numeric information of the matches (not the alignment or other sequence
information) in XML-format.

Besides these files, subdirectory SELECT also contains a makefile, specifying how to compile
a shared object for the supported platforms.

F The Tables Comprising the Index

Suppose the input files contain the sequences T1, . . . ,Tk in this order. Let # be a symbol not
occurring in any Ti and suppose S = T1#T2# . . .Tk−1#Tk. That is, # is used as a separator symbol.
Let n = |S| = k− 1+∑

k
i=1 |Ti|. The index consists of the tables prjtab, tistab, oistab, suftab,

bwttab, lcptab, llvtab, skptab, bcktab, ssptab, destab, sdstab.

These are defined as follows:

• prjtab contains the ”‘project information”’, i.e. some basic information about the index in
human readable form. Here is an example:

F THE TABLES COMPRISING THE INDEX 83

dbfile=atEST 999815 772376
totallength=772376
numofsequences=1952
numofdbsequences=1952
numofquerysequences=0
prefixlength=7
largelcpvalues=2317
maxbranchdepth=517
integersize=32

This information shall be read as follows: There is only one database file atEST of length
999815. The total length of the sequences in this file plus the separator symbols between
the sequences is 772376. The total length of all database sequences and their number is
given in the next two lines. The construction of the index was done using an initial bucket
sorting step with prefixlength set to 7. The number of lcp-values (see below) larger or equal
to 255 is 2317, and the largest lcp-value is 517. The last line tells that the index has been
constructed by a version of mkvtree using 32-bit integer.

• tistab is the transformed input sequence (thus the abbreviation tis). In particular it is a table
of length n such that, for any i ∈ [0,n−1],

tistab[i] =

{
SEPARATOR if Si = #
ϕ(Si) otherwise

Here SEPARATOR is a non-printable ASCII-character different from WILDCARD. Each
entry in tistab is stored in 1 byte.

• oistab is the original input sequence after parsing (thus the abbreviation ois). In particular
it is a table of length n such that, for any i ∈ [0,n−1],

oistab[i] =

{
SEPARATOR if Si = #
Si otherwise

Each entry in oistab is stored in 1 byte.

• suftab is a table of length n+ 1. To define it, we need some preliminaries: tistab can be
interpreted as a sequence, say T , of length n. Let $ be a new symbol greater than any
symbol in T . Consider the string T $ and let Xi = Ti . . .Tn−1$ for any i ∈ [0,n]. That is,
Xi is the suffix of T $ starting at position i. Suppose X j0 ,X j1, . . . ,X jn is the sequence of
suffixes in ascending lexicographic order. Then table suftab of length n+ 1 is defined by
suftab[i] = ji for any i ∈ [0,n]. If n < 232, then each entry in suftab is stored in 4 bytes.
Otherwise, it is stored in 8 bytes.

• stitab1 is the reduced version of the inverse suffix table. It is a table of length n + 1.
To define it, we have to introduce table stitab. This is the inverse of table suftab, i.e. it

F THE TABLES COMPRISING THE INDEX 84

satisfies the equality suftab[stitab[i]] = i for all i ∈ [0,n]. Now suppose that stitab[i] ∈
[bcktab[w],bcktab[w]−1] for some string w of length prefixlength. Then

stitab1[i] =
{

255 if stitab[i]−bcktab[w]≥ 255
stitab[i]−bcktab[w] otherwise

Each entry in stitab1 is stored in 1 byte.

• bwttab is a table of length n+1 such that, for any i ∈ [0,n],

bwttab[i] =

{
undefined if suftab[i] = 0
tistab[suftab[i]−1] otherwise

Each value in bwttab is stored in 1 byte. bwttab is the Burrows and Wheeler transforma-
tion.

• lcptab is a table of length n+1. Suppose that for any i ∈ [1,n], lcp(i) is the length of the
longest common prefix of the suffix Tsuftab[i−1] and Tsuftab[i]. If lcp(i)< 255, then lcptab[i] =
lcp(i). Otherwise, lcptab[i] = 255 and in table llvtab we store the pair (i, lcp(i)). In other
words, llvtab stores the large lcp values. The pairs in table llvtab are ordered according to
their left component. lcptab[0] is undefined. Each entry in lcptab is stored in one byte. If
n < 232, then each entry in llvtab is stored in 8 bytes. Otherwise, it is stored in 16 bytes.

• skptab is a table of length n+1 such that, for any i ∈ [0,n],

skptab[i] = min({n}∪{ j ∈ [i+1,n] | lcp(i)> lcp(j)})

The abbreviation skp stands for skip-value. If n < 232, then each entry in skptab is stored
in four bytes. Otherwise it is stored in 8 bytes.

• For some value prefixlen > 0 as specified in prjtab, table bcktab stores the bucket bound-
aries. These are defined as follows: Let r = mapsize−1, l = prefixlen, and Σ = [0,r−1].
For any sequence w ∈ Σl , define κ(w) = ∑

l−1
i=0 rl−1−iwi. κ : Σl → [0,rl − 1] is a bijective

function, mapping each w ∈ Σl to the corresponding integer to base r. For each w ∈ Σl ,
bcktab[κ(w)] stores a pair of integers (p,q+1) such that:

– Tsuftab[p] is the lexicographically smallest suffix of T which has w as a prefix

– Tsuftab[q] is the lexicographically largest suffix of T which has w as a prefix

If w does not occur as a substring of T , then p = q+1. bcktab is of size rl . If n < 232, then
each entry in bcktab is stored in 8 bytes. Otherwise, it is stored in 16 bytes.

• ssptab is a table of length k− 1 storing, in sorted ordered, the positions in S where the
separator symbol # occurs. If n < 232, then each entry is stored in four bytes. Otherwise,
it is stored in 8 bytes. The abbreviation ssp stands for sequence separator positions.

• destab stores the concatenated descriptions from the input files including a separator \n.

F THE TABLES COMPRISING THE INDEX 85

Table 7: Overview of the tables comprising the index. n is the total length of all database se-
quences including the k− 1 separator symbols. k is the number of database sequences. r is
mapsize− 1 and mapsize is the number of lines in the symbol mapping file. The size of each
entry is given in bytes, assuming that n < 232. If n ≤ 232, then the size of each entry in table
suftab, llvtab, skptab, bcktab, and ssptab is twice as large. If any of the options -smap, -dna,
or -protein was used for mkvtree, then there exists a corresponding table al1tab storing the
symbol mapping. Otherwise, all symbols contained in the file are stored in al2tab.

table description length size per entry
prjtab project information a few lines
tistab transformed input sequences n 1
oistab original input sequences n 1
suftab suffix array n+1 4
stitab1 reduced inverse suffix array n+1 1
bwttab Burrows Wheeler Transformation n+1 1
lcptab longest common prefixes < 255 n+1 1
llvtab longest common prefixes ≥ 255 |{i ∈ [1,n] | lcp(i)≥ 255}| 8
skptab skip values n+1 4
bcktab bucket boundaries rl 8
ssptab sequence separator positions k−1 4
destab descriptions for sequences sum of description lengths
sdstab start pos. descriptions k+1 4
al1tab symbol mapping used a few lines
al2tab enumeration of symbols ≤ 255

• sdstab is a table of length k + 1 storing the starting positions of the descriptions of the
sequences. That is, for any i ∈ [0,k− 1], the description of sequence i is stored from
position sdstab[i] to sdstab[i+ 1]− 1. If n < 232, then each entry is stored in four bytes.
Otherwise, it is stored in 8 bytes.

Table 7 gives an overview of the different tables.

To satisfy the different matching tasks, different tables are required, according to the following
rules:

self comparison: If only the number of exact substring matches is to be reported, then bwttab
and lcptab. Otherwise, lcptab, suftab, and additionally:

• bwttab, if direct matches are to be reported.

• tistab, if degenerate matches or palindromic matches or the string content of a match
is to be reported.

G ENVIRONMENT VARIABLES 86

• bcktab, if palindromic matches are to be reported.

query comparison: If the matching task is to be performed online, then tistab. Otherwise,
lcptab, tistab, suftab, and bcktab.

The following additional rules apply. In all cases, destab, sdstab, and prjtab are required. If there
is more than one sequence in the index, then also ssptab. If lcptab is required, then also llvtab.
Table skptab is currently not required for any application implemented in vmatch.

G Environment Variables

There are some environment variable which allow to influence the behavior of the programs
described here:

• MKVTREESMAPDIR: is a colon separated list of directories to search for symbol map files.

• VMATCHCOMMENTTOSTDOUT: if set to the value on, then the line showing how much sym-
bols are masked (for option -dbmaskmatch or -qmaskmatch) is shown on stdout. If set to
off, then the line is shown on stderr.

• VMATCHRELATIVEINDEXPATH: The last argument of a vmatch-call is the indexname.
By default, the indexname is shown with its absolute path. If this environment is set to the
value on, then the path before the indexname is omitted.

• LD_LIBRARY_PATH: colon separated list of directories, where to find the shared object
files used as arguments for the option -selfun.

Index
t, 16, 28
.fna, 31, 59
.match, 31, 59
.single, 31
.sl, 33
.so, 33
cand, 28
chain, 31
matchcluster, 32
remred, 29

abbrev, 38
abbreviub, 38, 66
alignment, 26, 31, 36–38, 43

high scoring, 77
optimal, 77

alphabet, 5
DNA, 5, 73
protein, 5

Arabidopsis, 11
atEST, 11, 17, 21, 23, 40, 48, 57
atEST.skp, 12

bac, 13
bcktab, 83
best mode, 35, 36
BLAST, 78
bwttab, 83
byte order, 24

cand, 70
chain-parameter, 31, 32
chain-parameters, 32
cluster, 30, 57

singleton, 31
Codonseq, 54
Codonseq.fna, 53
comment, 76
Compaq-Alpha, 5, 64
comparison

query, 85
self, 84

D, 42

database, 5
dbfiles, 7, 16
DE, 6, 15
DEFINITION, 6
deletion, 25, 36, 73
description

EMBL, 6, 66
FASTA, 6
GENBANK, 6, 66
SWISSPROT, 6, 66

destab, 83
distance

edit, 73
hamming, 73
Levenshtein, 73
value, 74

dnavsprot, 69

E-value, 25, 42
Ecoli K12, 55–57, 60
Ecoli O157:H7, 12, 45, 46, 52, 55, 56, 60
EcoliO157H7, 12, 56, 57
edit distance, 36
EMBL, 6
endian

big, 24
little, 24

error code, 5, 6, 8, 11, 16, 28, 33, 75, 80
excluding options, 40
exit code, 10, 19, 20, 23, 39
extraargs, 33

F, 53, 54
file

binary, 24
cluster, 59
database, 7
index, 5
input, 5
match, 31, 59
output, 18

filename, 20, 31, 33
filenameprefix, 30, 31

87

INDEX 88

filepath, 9, 17
flag, 29, 30, 37, 38

G, 53, 54
gcc, 64
GENBANK, 6
greedy, 25
greedy algorithm, 77
gzip, 66

H, 54
hamming, 35

I, 54
ID, 6, 15, 66
identity value, 25, 43
index, 5
indexname, 24, 26
input

format, 5
gzipped, 6, 28

insertion, 25, 36, 73
IUB, 38

keepleft, 29, 67
keepleftifsamesequence, 29, 67
keepright, 29, 67
keeprightifsamesequence, 29, 67

largeheading, 49
LATEX, 18, 19
lcptab, 83
LD_LIBRARY_PATH, 64, 85
LD_LIBRARY_PATH, 33
leftseq, 44
leftseq, 38
Linux, 5, 24, 64
LOCUS, 6, 66
low complexity, 81

M. genitalis, 13
M. pneunomiae, 13
mapfile, 7, 8, 16, 28
match

complete, 25
containment, 74
degenerate, 25, 74

differences, 74
direct, 25, 42, 73
exact, 25, 74
extension, 25
instance, 42, 74
kind, 25
maximal, 74
maximal unique, 25, 29, 50, 74
maximal unique candidate, 29
mismatch, 74
palindromic, 25, 42, 73
postprocessing, 26
query, 48
substring, 25
unique, 55

match score, 25
matchcluster-parameter, 32
matchfile, 65
maxclsize, 30, 31
maxgapsize, 34
maxlength, 39
mfdindex, 59
mgen.fna, 13
minclsize, 30, 31
mingapsize, 34
mismatch, 25, 35, 36
mkvtree, 5
MKVTREESMAPDIR, 7, 16, 85
mode, 37
mpneu.fna, 13
multiple fasta, 5
Multiseq, 79
myseqnum, 21

oistab, 82
Option

-absolute, 39
-allmax, 36
-allout, 10
-bck, 10, 19
-best, 37
-bwt, 10, 19
-complete, 29
-dbcluster, 30
-dbmaskmatch, 30
-dbnomatch, 29

INDEX 89

-db, 7, 16
-dnavsprot, 28
-dna, 8
-d, 34
-evalue, 36
-exdrop, 36
-e, 35
-f, 39
-help+, 39
-help, 10, 17, 19, 20, 23, 39
-hxdrop, 36
-h, 34
-identity, 37
-indexname, 9, 17
-i, 37
-lcp, 10, 19
-leastscore, 36
-l, 34
-maxlength, 20, 22
-minlength, 20, 22
-mum, 28
-nodist, 39
-noevalue, 39
-noidentity, 39
-nonredundant, 31
-noscore, 39
-ois, 10, 17, 18
-online, 33
-pl, 9
-pp, 31, 32
-protein, 8
-p, 34
-qmaskmatch, 30
-qnomatch, 29
-qspeedup, 33
-q, 28
-randomlength, 20
-randomnum, 20
-range, 22
-seedlength, 36
-selfun, 33
-seqnum, 20
-seq, 22
-showdesc, 38
-skp, 10, 19

-smap, 7, 16
-snum, 22
-sort, 37
-sti1, 10, 19
-suf, 10, 19
-supermax, 28
-s, 18, 37
-tandem, 28
-tis, 9, 17, 18
-transnum, 16
-version, 10, 17
-v, 10, 17, 39
allunique, 29
-best, 67
-evalue, 67
-pl, 66
-qspeedup, 66
-range, 67
-selfun, 67
-seq, 67

option category
algorithms, 33
direction, 34
input, 28
matchconstraint, 34
matchkind, 28
output, 37
postprocessing, 29

ORFs, 51

P, 42
parsing

output, 78
Patterns, 51
percentage mode, 35, 36
prefixlength, 9
prefixlength, 66
prjtab, 81
Proteinseq, 15, 45, 53

queryfiles, 28

reading frame, 25, 69
remred, 29
repeat

branching, 25

INDEX 90

branching tandem, 75
maximal, 25
supermaximal, 25, 28, 75
tandem, 25, 28, 75

replacement, 73
rightseq, 44
rightseq, 38

sdstab, 84
select

description, 22
number, 21
randomlength, 20, 21
randomnum, 20

selection function, 78, 79
bundle, 79

selectmatch, 63, 68, 80
selectmatchFinaltable, 68
selectmatchHeader, 68
selectmatchFinaltable, 80
selectmatchHeader, 33, 79
selectmatchInit, 68, 80
selectmatchWrap, 68, 80
sequence

pattern, 29
SGI, 5
shared object, 79

compile, 64
Sint, 79
skipprefix, 39
skptab, 83
smallheading, 49
sort mode

ea, 37
ed, 37
ia, 37
id, 37
ida, 37
idd, 37
ja, 37
jd, 37
la, 37
ld, 37
sa, 37
sd, 37

ssptab, 83

stitab, 83
stitab1, 83
StoreMatch, 79, 80
Substring Specification, 77
suftab, 82
SUN, 5, 24, 64
swissp.sp.gz, 13, 15, 23, 56
SWISSPROT, 6
symbol mapping, 5, 7, 16, 75

tistab, 82
tolower, 30, 57
toupper, 30
TransProt11, 76

U89959, 48

vlsi, 24
vmatch, 24
VMATCHCOMMENTTOSTDOUT, 30, 70, 85
VMATCHRELATIVEINDEXPATH, 70, 85
vmatchselect, 65
vmigrate.sh, 24
vseqinfo, 17
vseqselect, 20
vstree2tex, 18
vsubseqselect, 22

wildcard, 8, 38, 75, 76

X, 30
X, 30
Xdrop, 77
xml, 38, 49

Zhang, 77

	Introduction
	mkvtree
	The Options of mkvtree
	Applying mkvtree

	mkdna6idx
	vseqinfo
	Applying vseqinfo

	vstree2tex
	Applying vstree2tex

	vseqselect
	Applying vseqselect

	vsubseqselect
	Applying vsubseqselect

	vmigrate.sh
	Applying vmigrate.sh

	vmatch
	Input Options
	Matchkind Options
	Postprocessing Options
	Algorithm Options
	Direction Options
	Matchconstraint Options
	Output Options
	Miscellaneous Options
	Applying vmatch
	Self Comparison
	Matching Queries against an Index
	Matching a DNA sequence against a Protein Index
	Matching a DNA sequence on the Protein Level
	Computing Regions not containing a Match
	Masking Matches
	Clustering Indexed Sequences
	Computing a non-redundant set of sequences
	Chaining Matches
	Clustering Matches
	Selection Functions

	vmatchselect
	Recent Changes
	References
	Basic Notions
	Specification of a symbol mapping
	The X-Drop Extension Strategy
	Substring Specifications
	Selection Function Bundles
	The Tables Comprising the Index
	Environment Variables

